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SUMMARY

Goals and objectives

The long range goal of this program is to develop an improved understanding of

phenomena of importance to directional solidification, to enable explanation and

prediction of differences in behavior between solidification on Earth and in space.

Emphasis during the period of this grant was on experimentally determining the

influence of convection and freezing rate fluctuations on compositional homogeneity

and crystalline perfection in the vertical Bridgman-Stockbarger technique. Gregory

Neugebauer correlated heater temperature profiles, buoyancy - driven convection, and

doping inhomogeneties using naphthalene doped with azulene. Ross Gray is aiming to

determine the influence of spin-up / spin-down on compositional homogeneity and

microstructure of indium gallium antimonide. Mohsen Banan intends to determine the

effect of imposed melting - freezing cycles on indium gallium antimonide.

Results

When the temperature of melts of organic compounds decreased with height near the

solid-liquid interface, the convection was vigorous, although frequently asymmetrical.

At growth rates of up to 6 mm/hr impurity concentration was uniform in cross sections

and the axial concentration profile corresponded to theoretical for complete mixing. At

higher growth rates, cross sectional variations in impurity concentration occurred; these

variations were nearly always asymmetric. Both the magnitude of the cross sectional

variations and their asymmetry tended to increase with decreasing temperature

difference, increasing growth rate, and increasing melt depth. When the temperature of

the melt increased with height very little convection was observed. Cross sectional

variations in impurity concentration were significant at all growth rates, and were

usually asymmetric.

Apparatus and techniques were developed for vertical Bridgman growth of InSb-GaSb

alloys with ACRT, current interface demarcation, vibration, and temperature

measurements inside the melt and solid. When the axial temperature gradient was large

during growth cracking occurred in the ingots either during growth or afterwards

during metallographic operations. With a smaller axial gradient not only was cracking
nearly eliminated, but the grain size was increased as well.

With or without ACRT the axial composition profiles of InSb-GaSb corresponded to

well-mixed conditions in the melt during growth. Application of ACRT with a rotation

rate of 16 rpm and a cycle time of 26.5 s resulted in less radial variation in composition

than growth without ACRT or with ACRT at a rotation rate of 80 rpm and a cycle time of

10 s. An ingot growth with ACRT had fewer twin and grain boundaries than an ingot

grown without ACRT under otherwise identical conditions.



A computer model was also developed for radial variations in impurity concentration
without convection. Radial segregation was predicted to increase as the interface shape

deviates increasingly from planar, as the freezing rate increases, and as the segregation

coefficient deviates from unity.

A theoretical analysis revealed the conditions under which composition fluctuations in a

solidifying material will diffuse away before the solid cools to room temperature.

Personnel

All together, four doctoral students participated in this research over the 4 years of the

grant. Ms. Lorraine Ruggiano dropped out of graduate school just prior to taking her

qualifying examination, and so produced no results. Greg Neugebauer completed his

Ph.D. in January of 1990. The results sections of his thesis are appended to this report.

Pending renewal of this grant, Mohsen Banan is being supported by Clarkson University

and is expected to complete his Ph.D. thesis in about one year. During the final year of

the present grant Ross Gray was supported almost entirely by NASA Headquarters as a
NASA Graduate Student Researcher. He also is expected to complete his Ph.D. thesis in

about one year.
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I. THE INFLUENCE OF CONVECTION ON C()M PONENT SF, GREGATION

IN TI 1E VERTICAL BRIDGMAN - ST()CKBARGER TECI IN IQUE

Gregory T. Neugebauer

Summary

The goal of this project was to determine the relationships between longitudinal and

circumferential temperature profiles in the furnace, convection patterns, a_d variations

in impurity doping. This was accomplished by fabrication of special filrnacos, li1911
streak photography, solidification of nal_l{Ihal,'lu' doped with azulene, and

microchemical analysis for azulene concentration throughout the resulting ingots.

When the temperature of the melt decreased with height near the solid-liquid interface,

the convection was vigorous, although frequently asvmmelrical. At growlh tales _[ up
to 6 mm/hr the azulene concentration was unifornl in cross seclions and tl_e axial

concentration profile corresponded to theoretical for complete mixing. At higlwr gr¢_wlh
rates, cross sectional variations in azulene concenlralion occurred; Ihcse varialiolp_ w{'rc

nearly always asymmetric. Both the magllitude ot the cross sectional variations and

their asymmetry tended to increase with decreasing temperature differeI_ce, increasillg
growth rate, and increasing melt depth.

When the temperature of the melt increased with height very litlle convection was

observed. Cross sectional variations in impurity concentration were significant at all

growth rates, and were usually asymmetric.

A computer model was also developed for radial variations in impurity concentration

without convection. Radial segregation was predicted to increase as the interface shape

deviates increasingly from planar, as the freezing rate increases, and as the scgregalitn_

coefficient deviates from unity.

The research methods and results are given in delail in Appendix A, which is excerpted

from Greg Neugebauer's Ph.D. thesis. This thesis was completed in January 199{).

1
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II. INFLUENCE OF SPIN-UP / SI'IN-I)()WN ON COMI'OSH'I()NAI.

HOMOGENEITY AND PERFI-CTION OI; 131RECTIONALLY SO1A I)I FIEI)

INDIUM GALLIUM AN'IIMONIDI_

Ross G l'a y

S u m nl a r y

The goal of this continuing project is to deterndne the mechanism by which [l_e

application of the accelerated crucible rotation teclu_ique (ACRT or spin-ut_/spin-dt)wn)

increases the compositional homogeneity and crystalline perfection of alloy
semiconductors.

An apparatus was constructed for vertical Bridgman-Stockbarger growth of lnxGal_xSb
with ACRT applied. Temperature measurements inside the material enabled u,4 to

determine the optimal hot and cold-zone temperatt)ms and adiabatic zone thickness for

a favorable tlmrmal environment. Techniques were developed for preparing ampoules

containing the alloy. In order to avoid oxide, an etcl_ing apparatus was designed so that

all oxide can be removed from the antimony and indium shot used as starting material.

A rocking furnace was designed and constructed for mixing melted In, Ga, and Sb shot

into homogenized starting material.

Five ingots were directionally solidified from starting material (ff composition

In 0 2Ga() 8Sb. Three were grown wilh applicali¢_)l (_f A('RT and tw() will)(n)l. 'lllp axi;ll
an_i radialcomposition profiles of three ingots were determined using energy dispersive

X-ray spectroscopy. The axial profiles were compared to theoretical results for
well-mixed conditions in the melt during growth. All profiles agree remarkably well

with theory. The radial profiles suggest that applicalion of ACRT with a rotation ral(_, of

16 rpm and a cycle time of 26.5 s results in less radial segregation than growth without

ACRT or growth with a rotation rate of 80 rprn and a cycle time of 10 s.

The number of grain and twin boundaries was determined in two ingots, one gloxvn

with application of ACRT and one without. Tlle ingot grown wilhout ACRT had 3.(/2

twin boundaries/ram and 0.535 grain bounda)ics/mm. The ingot grown with ACV, T
had 2.38 twin botmdaries/mm and 0.368 grain b_)l)))daries/mm.

A. Introduction

Bulk single crystals of the alloy system InxGa l_xSb, which is being used in this research,

would have applications for opto-electronic devices such as pholodetectors and

microwave oscillators [i-3]. Unfortunately no one has succeeded in routint:ly grt)wil_g

single crystals of concentrated III-V and II-VI alloys, of which InxGal_xSb is

representative.



Free convection, which often can be time-depemtent [4], has proven to be a large
obstacle to obtaining compositionally homogeneous crystals. Previous experimenters
attempted to eliminate the adverse effects of free convection by applying a magnetic
field to the melt in order to suppress the convection [5] and by growth in the
reduced-gravity envircmnmnt of space where lnu_yam'y effects are much h'ss I6-9]. Both

techniques improved the quality of the resulting crystals.

In the vertical Bridgman-Stockbarger (VBS) growth technique, the charge is sealed in a

growth ampoule. This ampoule is then lowered at a slow rate through a temperature

gradient created by a furnace on top of a cooler. "lhis set-up allows one to indet+ctldelltly
control the interface shape, growth rate, and temperature gradient. While this

arrangement with the heater on top is said to be thermally stable, natural convection is
always present on earth due to unavoidable radial temperature gradients and variations

in composition. This convection is often time-dependent [4]. The result is variations in

temperature and flow velocity near the interface, causing growth rate fluctuations. An

inhomogeneous composition profile with striations parallel to the interface can develop.

One method of eliminating free convection problems is to introduce regular, h_rced

convection on a scale that overwhehns any buoyancy effects. Using forced convection

offers the additional advantage of keeping the melt well-mixed, thereby eliminating
cross-sectional compositional variations. Spin-up/spin-down [II,12], often referred to

as the accelerated crucible rotation technique (ACR'F) when applied to crystal growth

[10,13-16], is a method by which effective mixing can be achieved without making

physical contact with the melt. Mixing is achieved by periodically varying the rotation
rate of the ampoule. Capper et al. [I0] at Mttllard in Southampton, England applied

ACRT during the vertical Bridgman growth of t lg, Cd 1 xTe. They achieved a dramatic

improvement in compositional homogeneity an_ cr57stalline perfection over ingots

grown without ACRT. While improved homogeneity is expected, the reason for

increased grain size is not known.

Recent research by Larrousse [17] at Clarkson University suggests that ACRT leads to

large fluctuations in freezing rate and segregation. Meltback of the grown solid would

be expected to occur during each spin-up/spin-down cycle. This periodic melting and

freezing could have enhanced grain selection and eliminated twins in the solidification

of HgxCdl_xTe at Mullard. The benefit of periodic melting and freezing was
demonstrated by Jackson and Miller [18] using the organic compound salol. Another

possible explanation for the improved crystalline perfection of the ingots grown with
ACRT is that ACRT causes the interface to be less concave (more convex) [19,20]. This

would enhance grain selection by causing grains not aligned with the direclion of grmvth

to grow out as solidification proceeds. In conjunction with this research, Mohsen Banan

is performing experiments that will produce periodic tneltirtg and freezing without the
added convection present with ACRT (see next seclion in this report). It is hoped that

this will allow one to distinguish between the stirring and the periodic remelting etfects
of ACRT.

3



B. Progress

An In0.2Ga0.8Sb ingot was solidified in the VBS apparatus at 8 ram/day. The

high-temperature zone of the furnace was set at 800°C, the low-temperature zone was at

100°C, and the length of the adiabatic zone was 2.54 cm. These settings were chosen

using the conditions Sen [51 used to grow the same material as a guideline. The

resulting ingot was highly twinned and contained many small grains. The poor crystal

quality is thought to have been caused by the extremely high temperature gradient
(150°C/cm) across the adiabatic zone of the furnace. TMs gradient was determined by

placing a thermocouple in an empty quartz ampoule and translating it through the

apparatus. Sen stated in her thesis [51 that a gradient above 40°C/cm results in a poor

crystal with many microcracks due to the high thermal stress. We concluded that the

thermal characteristics of Sen's apparatus were much different than those of the present

VBS apparatus, so that her temperature settings produced an unreasonably large

temperature gradient in our apparatus.

In order to reduce the temperature gradient in our VBS apparatus, the

constant-temperature circulating bath with a range of -30°C to 150°C used to cool the

low-temperature zone was replaced by a resistance heater capable of sustaining

temperatures from 200°C to 1000°C within 0.5°C. The adiabatic region was increased in

length from 2.54 cm to 5.08 cm. These changes allow the gradient to be reduced to

40°C/cm when temperatures of 760°C and 480°C are used in the high and

low-temperature zones, respectively.

An improved lnethod for the preparation of the materials for solidification was devised.

The antimony and indium shot purchased for this research had layers of oxide on their

surfaces. An etching apparatus was designed to remove this oxide. The material is

etched in a mixture of I tlCI:I 11210, rinsed in water, and then rinsed in metllanol. All of
these steps are carried out in a ory nitrogen atmosphere. The sealed etching vessel is
removed from the etching apparatus and placed in a glove box filled with dry nitrogen,

where it is weighed. By using this procedure, the clean antimony and indium are not

reintroduced to an oxygen environment. This greatly improved the quality of the ingots

grown, since the presence of oxide tends to result in the sticking of the grown ingot to

the ampoule wall.

A rocking furnace for mixing the elements was designed and constructed. The rocking
furnace is mounted horizontally on a shaft that allows it to alternately tilt by 15 degrees

to the vertical in either direction when it is driven by a cam and shaft assembly. The

rocking motion enables us to mix the individual elements (six nines grade In, Ga, and Sb

shot) to produce homogenized starting material for the directional solidification

experiments. Some black residue forms on the material during the rocking process. This

is removed by sandblasting with 220 grit silicon carbide particles followed by ultrasonic

cleaning in electronic grade methanol. By following this procedure, all grown ingots are

clean, shiny, and slide easily from the ampoule after growth.

Five ingots of In0.2GaD0.sSb were directionally solidified (three with application of
ACRT and two without). The radial and axial composition profiles were determined for

four of these ingots, and the number of grain and twin boundaries was counted in two

ingots. The composition of the ingots at various axial and radial locations was

determined using energy dispersive X-ray spectroscopy (El)X). The spectral data was



collected using a Tracor Northern model TN-2000 and then transferred to floppy disk.
The data were then analyzed using a program developed at the NASA Marshall Space
Flight Center, which is described in detail by Gillies [22]. This program compares the
unknown spectrum to the spectraof two standards and determines the mass fraction of
InSb in the unknown sample. The program ignores any atomic number, absorbance, and

fluorescence (ZAF) corrections that might be necessary and assumes that the ingot is
stoichiometric.

The axial composition profiles of three ingots were analyzed. Figure 1 shows mole
fraction of InSb in the solid versus mole fraction of ingot solidified. The mole fraction

solidified g is the ratio of number of moles solidified when the interface is at a specific

axial location to the total number of moles in the entire ingot. The results for each ingot

are practically identical and agree extremely well with the theoretical curve for

well-mixed conditions in the melt, assuming no solid-state diffusion and equilibrium at

the melt-solid interface. This suggests that even without ACRT there is enough mixing

present to create a completely stirred melt. Since the growth rate is very low (8
mm/day), the convection need not be intense. Diffusion and free convection are

sufficient to keep InSb from accumulating at the growing interface. Due to the presence

of well-mixed conditions without forced convection, application of ACRT does not affect

the axial composition profile.

Figure 2 shows percent radial segregation obtained t rom the radial composition profiles

of three ingots analyzed. Percent radial segregation is defined as the maximum mole

fraction of InSb across the radial slice minus the minimum, divided by the average.
Crystal E1 was grown without ACRT, ingot E2 was grown with an ACRT rotation rate of

80 rpm and a cycle time of 10 s (10 s with rotation, 10 s without), and ingot E3 was

grown with a rotation of 16 rpm and a cycle time of 26.5 s. The two ingots grown with

ACRT (E2 and E3) had much less radial segregation than ingot El. t towever, it should

be noted that ingot El had a large oxide patch near top (last to freeze end). This oxide

patch caused a large void in the top of the ingot that occupied about 50% of its

cross-sectional area. This void could have been present in the liquid phase as well. This

would have resulted in asymmetry in the heat transfer, leading to an asymmetric

interface shape and large radial segregation. For this reason, it is impossible to conclude,

without analysis of more ingots, that the application of ACRT was responsible for the
reduction in radial segregation. It appears from Figure 2 that the combination of ACRT

parameters used in growing ingot E3 were better for reducing radial segregation than

those used in growing ingot E2.

The microstructure of the grown ingots was analyzed under optical and scanning

electron microscopes. No second phase precipitates or voids were observed in any of the

ingots. The numbers of grain and twin boundaries were determined in ingots E1 and E2

(E2 grown with application of ACRT and El without). Ingot E2 had 3.02 twin

boundaries/mm and 0.535 grain botmdaries/mm, while ingot E1 had 2.38 twin

boundaries/mm and 0.368 grain botmdaries/mm. These numbers were determined by

counting the number of boundaries intersected when scanning radially across

longitudinal sections of the ingots at 2 mm intervals. Although the ACRT grown ingot
had fewer number of boundaries, the difference is not significant enough to allow firm

conclusions to be made until more ingots are analyzed.



C. Plans

Now that the experimental apparatus and techniques seem to have been perfected,

many more ingots will be solidified during the remainder of this research project. More
ACRT rotation rates and cycle times will be investigated; two ingots will be solidified for

each set of conditions. Quenching studies will be done to determine the influence of
ACRT and its parameters on the liquid-solid interface shape of the growing crystals.
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III. INFLUENCE OF IMPOSED FREEZING RATE FLUCTUATIONS

MICROSTRUCTURE AND COMPOSITIONAL t-IOMOGENFJTY OF
GALLIUM ANTIMONII)E

Mohsen Banan

ON Tt IE

INDIUM

Summary

The long term goal of this project is to develop techniques allowing one to routinely

grow single crystal semiconductors uniform in composition. The objective is to

determine the influence of imposed freezing rate fluctuations on compositional

homogeneity, twinning, and grain size of directionally solidified indium gallium

antimonide. This research complements that described in the preceding section.

Together these should enable us to determine the mechanism by which spin-up /

spin-down reduces polycrystallinity in solidification of mercury cadmium telluride.

Passage of current pulses through the material during solidification will produce

alternate melting - freezing cycles without significantly influencing convection in the
melt.

A technique was developed to measure the radial and axial temperature profiles using

three thermocouples; one inside the charge and two attached to the anlpoule wall. The

thermal perturbation in the melt during applicali(m of current ptll_es was n:easllr(xt

in-situ. A cyclic temperature variation in the melt was observed during on-off Ctlllellt

pulsation. Application of a continuous current resulted in re-establishment of a new

steady state temperature in the melt.

Two ingots with 20% InSb composition were grown at 8 ram/day and 12 mn:/dav with

80 to 110°C/cm axial temperature gradient across the adiabatic zone, corresponding to

heater and cooler settings of 770 and 75°C. The ingots consisted of large number of

small grains and twins with scattered microcracks near the upper paris, presun:ably due
to thermal stress.

To lower the temperature gradient in the ampoule, the heat exchanger cooler in the

apparatus was replaced with a Kanthal resistance heater. The height of the adiabatic

zone also was increased. Two ingots with 20% InSb feed composili()l_ were grown in the

modified furnace at 7.9 ram/day ampoule lowering rate and 25 to 35°C/cm interfacial
temperature gradient, corresponding to ]mater and cooler settinw_ (ff _0(I and 475°C, A

significant improvement in the nficrostructure ol this ingot was observed as compared Io

ingots grown with a larger temperature gradient. In addition there were no

microcracks. In the first experiment, power to the heaters were turned off after

solidification of half of the ingot, in order to reveal the solid-liquid interface shape at that
time.

A new procedure was developed for preparation of the electroded alnpoules. Two
solidification experiments with current pulse were performed, l:lectrical continuity

across the electrodes was not achieved due to leakage of melt at the bottom electrode.

The leakage problem was resolved. A periodic growth experiments was carried out with

In0.2Ga0.8Sb feed composition. DC square-wave curent pulses 10 amp in amplitude



(15.7amp/cm 2 current density) and 26.5s on and off time (corresponding to the spin-_lp

/ spin-down duration performed by Gray) were. passed from solid t_, mell. lhe lwater

and cooler settings were 800°C and 475°C, yielding a temperature gradient of 35°(i/cm.

A vibration unit was added to tile solidificalion apparatus. Tlu' viblal_:r is usc'd tc,r

homogenizing the melt prior to iniliation of st,litlilication. It may al_:_, I_,' lllili_,c_t I_,

investigate the effect of axial vibration on the solidilication of inatc,_ [als. An atlempt was

made to measure the temperature fluctuations in the melt during application of axial

vibration to the ampoule. Recording of the temperature fluctuations was not feasible

due to slow response time of the thern_ocouple as compared to lhe I-reque_,y of

vibration (1 HZ to 20 HZ). An ingot with 20% InSb compositio_ was directionally

solidified at a lowering rate of 7.9 mm/day with application of axial vibration to the

ampoule at 2 HZ and 0.1 cm amplitude. The liquid-solid interface was; revealed by rapid

freezing of the melt. The interface was slightly convex.

A. Introduction

Solid solutions of semiconducting III-V and II-VI systems, such as i_ntium galliunl

antimonide and mercury cadmium telltlride, exhibit Ihe advanla!,,,, ¢_t c,,_po,_:ili_,l -

dependent properties. By selecting a suitable composition, particul;,r p_,,perlies can be

produced to suit different purposes and applications, such as ,q_lt}electrcmic and

infrared sensing devices. For example, a solid s¢_l_l[ion of InxGa I ,,<b iq a t-,romi_i,g
material for photodetectors, Gunn devices, and tlllt,e level oscillatol _;_ I ,11.

In spite of considerable interest, the production of large homogermcn_s single ctyst;qs of

concentrated alloys has not been feasible due to two basic probh'_ns a';::twiated wilh

alloy growth, i.e. compositional inhomogeneity and polycrystallinily Th,, origin _,f the

polycrystallinity is not understood despite the extensive research dowu, i1_ ll_is field.

When concentrated alloy melts are frozen, extensive segregati,m readily t_cc_us to

produce an inhomogeneous solid and wtorhological breakdown ch_,_, to constitutional

supercooling [5-7]. Such growth behavior may also be the cause of f¢,_a_ion of Iwin_,

grains, precipitates, dislocations, etc. While constitutional supercooling n_av be avoided

by use of a low growth rate and a large temperature gradient at flu, freo7ing, intp_hco,

twinning and polycryslallinity persist lmneth¢,l_,:;_ !1 I_a_; l_c,en st_,,, _1a1¢,¢1 Ileal tt_,,,,,'i_t, ,

rate fluctuations may lead to momentary cfmstitulional 'qll[R,l¢¢u,li_g \vilh
accompanying mwlt,ation of twins and grain_; ,,vt,_ when II_e av_q;_,,_' t_,,,,,,i_g _al_, i_

sufficiently low that constitutional supercooling is m_t expected.

Application of ultrasonic vibration during Czochral,;ki growth of l_,¢,a I .,,,qb (x II {_I)
seeded with (.;a,c,b r('std{ed in si_g, le crystals, wl_'t_'.t,; inJ;<_lS gl'Olv_ _xi{l_,_ vil,;_lh_n_

were polycrystalline 18]. The stirring induced by ultrasonic vibrali_,u was Ilun_!,,l_l It,

enhance mixing and to reduce the build-up of ilw reiected sell,to a! _J_o lkluid-s_lh'l

interface. However, as the feed composition was increased from 1 '7; to 3'", and 7% lngb,

increasing difficully was experienced in achieving single crvsl;,llinitv even wilh
application of ultrasonic vibrations. The polycrystallinitj was atlribuled 1o

morphological breakdown due to a high growth rate.
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Buoyancy induced convection is always present it, the melt du_il G s(,lidificali(,r_ (m
Earth because of the unavoidable thermal and conlpositional gradients. Stea_tv._;tale
flows may be desirable since they reduce the bllildllp of compositi_llal variations al the
interface due to segregation and reduce tho ._ensilivity of the ,_U(_wlh to ,:_all

fluctuations in gr¢,wlb rate. lh_wt'ver, l_llsl,',_¢lv II_,ws are tmd¢,_i_._lfl,' Iv,c_l_l,;_, II_,'v

restflt in temperature fluctuations, tlow v¢'locilv variations al_t tI_'_'7i111; lale

fluctuations. The microscopic distribution of ctm_ponents at tl,e inle,tace is ,dten

extremely sensitive to changes in convection, temperature and freezi1_g rale. In adclition

to causing compositional striations, these fluctuations may also lead to Imclealicm of

grains and twins.

A "thermally stable" VBS configuration, 'with the heater situated above cooler, may be
used for minimizing convective problems, llowever, due to unavoidable radial

temperature gradients and variations in composition of the melt at the, interlace, q(,,ne

convection is always expected [9,10]. One way to eliminate the effect of free convection

during solidification is to perform the experiments in space. "llm directi¢,lal

solidification of InGaSb ingots aboard Skylab [11-13] resulted in a reduction in the

number of twins and grain boundaries as comparcd with the corresponding i_g¢_{s
solidified on Earth under otherwise identical conditions. A similar red_ction i,_ the

number of twins was also observed in InGaSb ing¢_ts solidified with a ntagnetic field

applied to tlle meli to inhibit free convection [ l.l]. St,cl_animpr(wt't_:,_l wasalt_it,,,lt'¢t

to the suppression of temperature fluctuations in tim melt due to application ,_f the

magnetic field.

As pointed out in the preceding section by (;ray, anollwr approa_ 1_ I_ ,,v_,ztt,_,. l_t,_,

convection is to introduce regular, forced conveclion on a scale thai will ox erwhehn aJ_)

buoyancy effects. Mullard in England produces homogeneous large grain ltg(_dle

ingots by use of accelerated crucible rotatioz_ (ACRT) durin< l'ridF, lz_az_ g_,_wth.

Queching studies [16] of the HgCdTe ingots grown under applicathm of ACRI" revo,_le_t

the solid-liquid interface was less concave than without ACRT. Also a region al_ead of

the interface in ACRT grown ingots were found to consist of all¢,rnali_g cadmium

enriched and depleted zones, which was taken to bc evidence of pt'z i_dic _z_'lll_acl:. 'llm

marked grain size enlargement might have been due 1o a less concave i,,w_ face, pc, iodic

meltback and growth, and/or ACRT-induced stirring removing nuclei formed ,m tl_e

ampoule wall adjacent to the interface.

Recent electrochemical measurements by Larrousse [17] of mass l_a,_qter ¢t,uing /\CI_ I

of a vertical tube showed large fluctuations. Temperature measure_,,_l_ during tl_e leap
seeded flux growth of YIG with ACRT revealed I_ql_l,_'ralure oscillali,_p; ¢q2 I,_ _(k " _'ar
the interface [18]. We conclude from these ol_¢'rx'ations that it is lil,¢,Iv float tln'_¢' iq

periodic meltback and growth during solidificatio,_ wifl_ ACRT. Mcl l_,acl< ;u_d reg_ cuvth

have been shown to greatly accelerate grain sel('cli(m d_,ring soli_lificali,_ (_f fil,t_,; ,_f

salol [19]. The disl(walion densilv of (;aP was rt,du¢¢,d by a factor ¢_13 _'; If'still t_[ (_llt'
meltback cycle during LPE growti_ [20].

As shown in the preceding section, Gray is sludying tile effect ,ff ACRT {m the
compositional homogeneity and crystaliographic perfection of InSb-(}aSb _,;_lid

solutions. Indium gallium antimonide was chosen as a model substance _epres,-_ti_ G

II-VI and III-V alloy systems. For example, it has a phase diagram _iu_ita, I,_ ,n('r(.,,_y

cadmium telluride, but with a low melting temperature and vapor p, essu_ e. It e>.t_ilqts
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the same sort of solidification problems, i.e. twinning, grain formation, and
inhomogeneities.

To differentiate the effect of stirring from that of backmelting effect with ACRT, here we
grow lnGaSb ingols with and without aptqicali_,l _d cxlrrel_l pulses dl11illg direuli_,lal

solidification. Tht' passage of current results in a tlwl nlal t_erturbalion at tlw solicl-li_lxlid
interface due to the Peltier effect [22]. Joule and Thomson effects also occur in the melt

and the solid. The combination of these effects induces periodic melting and growth at
the interface without enhancing convection.

For comparison, the experimental parameters of the ACRT solidification runs and the

current induced growth variation runs are similar. Ingots are grown with the same feed

composition (20% InSb) and 8 mm/day ampoule translation rate. The interracial

temperature gradients are nearly the same. The frequency of current pulsation
corresponds with the frequency of ACRT.

B. Experimental methods

In this section we discuss the experimental al,parall_s, thermal cl_araclt'rization of llw

furnace, growth materials and ampoule preparation techniques, and in-situ temperature

measurements in the melt during application of current. The experimental apparatus is

shown in Figures _I and 2. It consists of a vertical Bridgman-Stockbarger assembly with
provisions for passing electric current and vibrations through the ampoule. The VBS

furnace is fabricated from two tubular furnaces (9" OD, 3" ID and 6" long) made of

Kanthal heating dements embedded in Fibrothal insulation. The maximum operating

temperature of the furnaces is 1100°C. The heater and cooler are separated by an

adiabatic zone with adjustable height of 0.5" to 4". Two microprocessor based contrc;llers

with PID are used to control the heater and cooler temperatures.

A translation trait, held vertically, is utilized to translate the ampoule down the furnace.

The translation unit was modified to achieve an ampoule lowering rate as low as 4

mm/day. (Low translation rates are required to avoid constitutional supercooling in the
InSb-GaSb solid solution system [15].)

The current interface demarcation system consists of an electroded ampoule, shown in
Figure 3, connected to a Keithley voltage/current pulse generator with a maximum

output of 10 amp and 100 W with a I000 s dwell time. The grapldle electrodes are

machined from UI:-4S graphite rods made by Ultra Carbon to proper dimensions, rin_ed
in an ultrasonic bath with de-ionized water and methanol, and dried in a furnace under

a vacuum of 10 .5 tort. To attach the molybdenum leads to the graphite electrodes, a

graphite cement, made by l)ylon Industry, is used. "lhe graphite el,me'tit is curod at

120uC for 4 hours and followed by another 4 hours at 320°C, preferably under vacuum.

The pulse generator operates in either constant current or constant voltage modes. If the
ratio of the voltage setting to the current setting is greater than the load resistance, tlm

generator operates in a constant current mode. The voltage is adjusted automatically to
compensate for an increase or decrease in the load resistance. Since, melt and solid have

different electrical resistivity, as solidification advances the resistance between two

electrodes varies. During periodic growth runs, the voltage and current outputs of the
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pulse generator are recorded to calculate the relative ampoule resistance•The resistance
versus ampoule lowering time and distance into the furnace allows one to determine the
time when solidification has been initiated and its position relative to the furnace axial
location.

A vibrating unit, nmnufactured by 13rueland Kjaer lnstrunmnts and connected [o a
power amplifier and function generator, was also installed on the moving platforn_ of
the translation unit. The ampoule containing growth materials can be attached to the

vibrating unit and be axially vibrated during solidification at different frequencies and

amplitudes. The vibrating unit is also used to homogenize the growth materials prior to
solidification.

Thermal characterization of the VBS furnace utilized to grow ingots is essential to

determine appropriate heater and cooler temperature settings to achieve a desired axial

temperature gradient• Temperature profiling of the furnace was performed by

measuring the temperature at different axial positions in the furnace. Due to different

thermophysical properties, an ampoule with charge has different thermal coupling with

the furnace as compared with an empty ampoule. Therefore it was considered desirable
to profile the furnace with a thermocouple placed in an ampoule with charge. Due to

the erosive nature of the metallic melt, a sheathed thermocouple must be used, or the

thermocouple must be coated with a protective high temperature ceramic cement. To

avoid oxidation of the molten materials, the arnpoule must be evacuated (or filled with

an inert gas) and sealed.

A technique was developed to measure the radial and axial temperat_lre profiles. Figme

4 is a schematic diagram of the thermocouples-an_poule arrangements used for

temperature profiling. One sheathed thermocouple was situated at the center of the

ampoule and two thermocouples were cemented to the ampoule wall at the same lateral

position the as the center thermocouple. The ampoule was loaded with

prehomogenized In 0 2Ga0 Sb, sealed under a vacuum of 10 -3 torr, and placed in the• .8

VBS furnace. The thermocouples were connected to three digital readouts for

simultaneous monitoring. Results of the profiling are given in the results section.

A technique was developed to measure the temperature in the melt during current

pulsing. A schematic diagram of the experimental apparatus is shown in Figure 5. This

arrangement consisted of a vacuum sealed ampoule containing the growth material in

contact with graphite electrodes and molybdenum leads. An ungrounded 304 stainless

steel sheath thermocouple was situated in the charge. The leads were connected to a

Keithly programmable voltage/current pulse generator. The thermocouple outpu! and

the voltage proportional to the applied current were recorded simultaneously on a

strip-chart recorder.

Two experiments were performed. In the first experiment a K-type thermocotlt_le

passing through a double-hole ceramic tubing was used. The thermocouple junction

was covered with a high temperature ceramic cement. The experiment failed due to

failure of the cement covering the thermocouple bead. Exposure of the thermocouple

junction to the current resulted in exessive overshooting of the thermocouple output

voltage. In the second experiment, a 0•081 cm diameter ungrounded type K sheath

thermocouple, shown in Figure 6, was placed in the charge. The electroded ampoule, 0.9

cm ID and 1.1 cm OD, was loaded with prehomogenized In0.2Ga0.8Sb. The height of the
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charge was 5 cm. The tip of the thermocouple was positioned 2.5 cm above the botlom
electrode. The pre-alloyed charge was melted and allowed to reach thermal equilibrium
with the surroundings over a 24 hour period. A series of pulsing experiment were
performed. Results are discussed in later.

In order to prepare experimental ampoules, we used a new cryo-vacuum unil eq_lil,ped

with argon, nitrogen, and methane gas inlets. This eliminated the moisture iJ_ the

ampoule (as observed previously when the former vacuum unit was used) and also
provides a 10 -6 torr vacuum. A proper arnount of 99.9999% purity growth materials In,

Ga, and Sb (purchased from Cerac and Johnson & Mathey) were weighed alld loaded

into a precleaned 8 in long ampoule. The ampoule was purged with argon three times,
sealed under a 10 -6 torr vacuum, and then placed in a rocking furnace. The growth

materials were homogenized and alloyed in the rocking furnace for 8 hours at 850°C.

The resulting melt was rapidly solidified by shutting off the rocking furnace. The alloyed

materials were chemically polished in 1 HF: 9 IINO3:10 tt20 solution for 10-20 s to

remove any scum on the surface of the ingot. The polished materials were kept in a
desicator.

The fused silica ampoules were cleaned according to the procedure obtained from

Rockwell International. The ampoule was soaked in Micro-cleanser overnight, rinsed
with de-ionized waler three times, rinsed with melhanol, soaked in tricllloreihane t_r !

hour, rinsed with acetone and methanol, soaked in 5% tlF for I0 rain, rinsed with

de-ionized water, soaked in aqua regia for 1 hour, and rinsed thoroughly with

de-ionized water. Afterward, the cleaned ampoules were dried and baked in a furnace
at 900°C for 3 hours.

For directional solidification runs the pre-alloye.d materials were loaded into a

pre-cleaned quartz ampoule. The ampoule was purged with argon three times and

sealed under a vacuum of 10 -6 torr. For current pulsing experiments the pre-alloyed

materials were solidified in a constricted-tip ampoule. The shaped ingot was placed in

between two electrodes in a quartz ampoule, as shown in Figure 3. The ampoule was
purged with argon and sealed under a vacuum of 1()-6 torr.

The loaded ampoule was attached to the ampoule holder of the translation unit. 'Ihe

ampoule was lowered into the VBS furnace. The bottom of the ampoule was situated 1
cm above the adiabatic zone. The heater temperature was set above the melting

temperature of the growth materials (about 710°C). The growth material was allowed to

melt and to equilibrate over 24 hours prior to initiation of the ampoule translaticm. To

measure the average macroscopic growth rale, lhe a_poule l_¢_sili¢_ waq _cc¢m1_,¢1 as a

function of time during the growth run. Thus lar an aml_oule lowering rate of 8
mm/day, feed composition of 20% InSb, and ingot dimensions of 0.9 cm in diameter and

7-8 cm long were employed for all growth experiments. (A temperature gradient greater
than 20°C for a growth rate of 8 ram/day is required to avoid constitutional

supercooling in the In0.2Ga0.8Sb system, Figure 7.)

After termination of a growth run, the heater and cooler temperatures were decreased at
30°C/hr to room temperature. The ampoule was removed from fmnace al_d t, mk_m to

retrieve the ingot. The ingot was sandblasted using 220 grid industrial SiC to reveal the

grains and twins. Afterward, the ingot was sectioned axially and mounted in epoxy.
The ingot samples were mechanically polished using 320, 420, and 600 grid size SiC
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polishing papers. The final polish was achieved by using 5 and 1 micron micropolish
alumina and polishing cloth. The samples were cleaned with de-ionized water in an
ultrasonic bath between eachstep. After mechanical polishing, the samples were etched
chemically to reveal the microstructure. The etchant contained HF, HNO 3, and H20 or

HAc. The volumetric fractions of etchant's components were varied from one ingot to

another depending on the effect of the etchant on the ingot.

The microstrcture of the ingots was examined using optical and scanning electron
microscopy. When this grant period ended last summer we had arranged with

NASA/MSFC in Huntsville to use their EDX and FTIR facilities to analyze our ingots.

C. Progress

The original furnace consisted of a Kanthal resistance tubular heater, 2.54 cm adiabatic

zone, and a heat-exchanger used as cooler attached to a circulating constant temperature
bath with o eratin tem erature ran e of-20°C to 100°C Axial tern erature rofilinP g P g • _ P _ P g

of the VBS furnace was,performed for heater settings of 800t'C and 850t'C and cooler
settings of 10°C to 70°C using a thermocouple in an empty ampoule. The axial

temperature gradients across the adiabtic zone corresponding to the above mentioned

settings were about 110 to 150°C/cm.

To measure the axial and radial temperature profiles, a type K sheath thermocouple was

placed 3 cm into a prehornogenized In0.2Ga 0 8Sb charge. Two K-type thermocouples
were cemented onto the outerwall of t_e amiJoule at the same lateral position as the

thermocouple inside the charge. The ampoule was sealed under a vacuum of 10 -3 torr.

The ampoule was situated in the heater such that tile thermocouple junctions were 3 cm
above the adiabatic zone. The temperature settings of the heater and cooler were 770°C

and 75°C, respectively. The height of the adiabatic zone was 2.54 cm. The charge was

melted and allowed to equilibrate over 24 hours. The thermocouple readings were

recorded at 0.2 cm intervals as the ampoule was moved slowly downward into the
furnace. Figure 8 shows the resulting temperature profiles. The freezing temperature of

othe melt varied from 695 to 550 C depending on the fraction that had solidified.

Referring to Figure 8, the freezing temperature range was front 1 cm above the adiabatic

zone to I cm into the adiabatic zone, meaning that the liquid-solid interface might be

near-convex to planar. Figure 9 shows that the axial temperature gradient across the

adiabatic zone varied from 75 to 150°C/cm. The highest gradient was near the center of

the adiabatic zone. The interracial temperature gradient at the beginning of growth was

about 75°C/cm. As solidification proceeded, the temperature gradient also increaseed.

Near the end of the growth the temperature gradient approached 140°C/cm. The G/V

ratio was in the stable region of Figure 7 for an In0.2Ga0.8Sb alloy.

Figure 10 shows the radial isotherms versus the corresponding axial position of the

ampoule in the furnace. The origin is the center of the adiabatic zone. The shape of the
isotherms changed from convex to concave as the ampoule was moved from the heater
into the cooler.

Two ingots with 20% InSb composition were directionally solidified. DS12-1 was
solidified at 12 ram/day with heater and cooler settings of 770°C and 75°C. DS8-2 was
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solidified at an ampoule lowering rate of 8 mm/day ampoule lowering rates with the
sameheater and cooler settings. Prior to initiating the growth, the materials were melted
and homogenized for 4 days by application of ACRT to the ampoule at 30 rpm (the
rocking furnace had not been fabricated yet). The dome shaped end of ingot DS12-1 in
Figure lla could have been due to insufficient mixing of the elements, l;igure 13 shows
the results of differential scanning calometery (1)SC) analysis of samples taken from four

different sections of the dome material. The melting temperature was between 500 and

510°C, which corresponds to the melting temperature of InSb.

Figure llb shows the microstructure of ingot DS12-1 after mechanically polishing and

chemically etching with lt-IF:IHNO3:ltt20 for 20 s to reveal the microstructure. A large

number of microcracks and a few voids were in the upper portion of the ingot. The

microcracks were possibly caused by thermal stress due to the high temperature

gradient. Figure 14 shows a SEM micrograph of a cross sectional sample taken from

halfway along the DS12-1. The dislocation pits were about 30 microns in diameter. In

DS8-2, as shown in Figure 12, the overall microstructure was not improved as compared

to the other ingot. Twins mostly started from the ampoule wall and propagated inward.

There were many bubbles on the surface of DS8-2. _Ihe surface of the ingot was partially

covered with a scumy film similar to that on the surface of DS12-1. The shape of the

interface, near the end of growth, was slightly convex as revealed in the last part to

freeze. Microcracks were also observed in this ingot. The larger cracks occurred during

etching. In DS8-2 the number of curved boundaries was less but the number of twins

was greater than in DS12-1.

To reduce the temperature gradient, there were two options; increase the cooler

temperature and increase the length of the adiabatic zone. The heat-exchanger cooler

(maximum temperature about 100°C) in the VBS furnace was replaced by a Kanthal

resistance furnace, similar to the one used for the top heater with an operating
temperature up to ll00°C. The height of the adiabatic zone was increased to 2.5". 1he

insulation at both ends of the VBS furnace was increased by 2" to suppress the

temperature variations near the ends of the furnace. A quartz liner was placed all the
way through the heater-adiabatic-cooler configuration.

Figures 15 and 16 show the temperature profile of the modified VBS furnace, measured

with a thermocouple in an ampoule without a charge, for different heater and cooler

settings. An axial temperature gradient of 30°C/cm to 40°C/cm across the adiabatic

zone was achieved. For the growth runs mentioned in the following, the growth

ampoules were prepared using the new cleaning procedure obtained from Rockwell,

loaded with 20%InSb feed materials pre-alloyed in the rocking furnace for _ hours al
850°C. The alnpoule was purged with ultra pure argon and evacuated at 10 -6 torr.

Ingot DS8-3 was solidified with an 8 mm/day ampoule lowering rate with temperature
settings of 800 and 450°C for heater and cooler. Translation was terminated after

solidification of 65% of the melt; the remaining melt was rapidly solidified by lowering

the heater temperature from 800 to 500°C. The cooler temperature was held at 475°C to

avoid exessive thermal stress on the already grown portion. After solidification of the

remaining melt, the heater and cooler temperatures were lowered at 30°C/hr to the

room temperature. Figure 17a is a photograph of DS8-3 after sandblasting. During

sandblasting it cracked into two pieces along the rapidly frozen region. The boundary

between the two regions was convex. The surface of the ingot was shiney and free of
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voids and bubbles. Figure 17b illustrates the axially sectioned ingot after being polished
mechanically and chemically etched using 1HF:IIqNO3:IHAc for 15-20 s. (The etchant
used for ingots DS12-1and DS8-2was not effective on ingot DS8-3.)

There were no microcracks in the directionally solidified portion of DS8-3. 1he number
of columnar grains diminished to flmr in the middle of lhe ingot. The overall

microstructural quality of DS8-3 was improved as compared to DS12-1 and DS8-2,

previously grown at larger temperature gradients.

DS8-4, shown in Figure 18, was directionally solidified at 7.8 mm/day translation rate
and 800 and 475 °C heater and cooler settings with an adiabatic zone of 5.08 cm (2").

The surface of the ingot was fairly shiney and free of bubbles and voids. A crack

occurred near the end of the ingot at the time of removal from the ampoule.

VDS8-5 was directionally solidified at 7.9 mm/day translation rate with axial vibration

of 2 Hz and 0.1 cm amplitude. The heater and cooler settings were 800 and 475°C.

Figure 19a is a photograph of VDS8-5 after being sandblasted. The ingot cracked during
sandblasting. A large number of bubbles and voids were on the surface of the ingot,

specially at its beginning. VDS8-5 was axially sectioned and sandblasted to reveal the

microstructure, Figure 19b. After solidification of half of the ingot, the heater

temperature was lowered from 800 to 710°C by shutting off the furnace for few
minutes. Afterward the heater was reset to its initial setting of 800°C. Referring to figure

19b a distinct variation in microstructure was observed at this perturbation, marked by

an arrow, indicating a near convex liquid-solid interface shape. Afterward directional
solidification at 8 ram/day was resumed. "lhe melt was rapidly frozen after

solidification of half of the ingot. The cooler was held at 475°C to avoid stressing the

already solidified region. The boundary between the two regions was convex. A few
twins started from the prephiery, near the outer surface of the ingot adjacent to the

ampoule wall.

Four growth runs were performed with electroded ampoules. The first experiment was
performed with the ampoule design shown in Figure 3c. Despite the bottom electode

fitting tightly against the ampoule wall, during heating up some molten material leaked

down into the bottom of the ampoule and rapidly froze. This broke the ampoule. The

ampoule design was modified to a double-wall ampoule design as shown in Figure 3b.

In the first growth run with the new ampoule design, melt again leaked between the
bottom electrode inner wall and the ampoule wall. The leakage problem was resolved

by filling the gap between the bottom electrode and the ampoule wall with high
temperature ceramic cement, manufactured by Omega Engineering, cured at 120°C for 4
hours.

CIDS8-6, Figure 20a, was grown at 7.9 mm/day translation rate. The heater and cooler

settings were and 475°C. The bottom of the ampoule was positioned I cm above the
adiabatic zone. After 40 hours of ampoule translation, corresponding to 1.3 cm of

translated distance, passage of current through the growth system was initiated. An

on-off 10 amp dc current pulse with 53 s period was passed from solid to melt (i.e. solid

+ and melt -) during the entire run. The duration of the pulses, 26.5 s on and 26.5 s off,

corresponds to the period used in the ACRT growth experiment described earlier in this
report. The variation in the voltage and current settings was recorded to permit
calculation of the relative ampoule resistance. Figure 21 ampoule resistance versus
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time. During the first 80 hours of pulsation the resistance was nearly constant and
stable. Then the resistance increased linearly. Such a change in the resistance can be
attributed to the progression of solidification.

Figure 20b shows CII)$8-6 after sanblasting. The axially seclioned ingot is shown in

Figure 20c. A crack appeared during cutting. A large number of scattered curved
boundary grains were present in tile first-to-freeze region of the ingot. The number of

columnar grains diminished in the middle of the ingot. A few twins started near the

prephiery of the ingot and grew parallel to the direction of growth. No new twins were

generated during growth. One half of the sectioned ingot was mounted in epoxy,

mechanically polished and chemically etched. No striations were detected even at 5000X
under SEM.

To determine temperature and freezing rate variations with current pulsing, an

electroded ampoule was prepared with 20% InSb feed composition material doped with

1000ppm Te (0.03 g). Due to a 3 hour power outage, the ampoule broke. (The available

backup power source for the VBS ingot growth apparatus, on the bottom rack in Figure
2, provides 2400 W for 40 min.)

In-situ temperature measurements during pulsations were performed in the melt prior

to the onset of solidification. Figures 21 and 22 show the temperature measurements in

the melt of In 0 2Ga 0 8Sb during 30 s a qnd 60 s pulsations. The steady temperature prior
to pulsation ii_ the' melt was 812.3°C. The temperature of the melt increased to

maximum values of 815.0 and 816.1°C, for the 60 s and 30 s pulsation times,

respectively. After the termination of the current pulse, the melt was allowed to cool to

the initial steady state temperature for 220 to 250 s. The temperature continued to rise for

10 s after the current was switched off and then began to decay. This extended

temperature rise probably reflects the response time of the thermocouple. (Similar

behavior was observed by Silberstein et al. [24] in studying the effect of pulsations on the

directional solidification of the Bi-Mn eutectic.) Passage of a square-wave 10 amp

current, 60 s on and 30 s off, through the melt resulted in a periodic temperature

variation in the melt, as shown in Figure 23. tlowever, alternating current pulses of 10

amp with 60 s duration, i.e. 30 s + and 30 s -, resulted in restablishment of a new steady
state temperature in the melt during each application of current.

The ampoule was then lowered into the furnace to promote solidification. The

thermocouple reading was monitored to position the thermocouple junction in the

vicinity of the liquid-solid interface (in reference to the freezing temperature of the

material, about 695°C). The objective was to measure the temperature variations due to
Peltier heating or cooling generated at the interface. At 716.1uC, passage of the current

resulted in a sudden jump of the thermocouple output, Figure 24. This jump, from 716

to 737°C, at the time of pulsation was due to exposure of the junction to the melt during

pulsation. The experiment was terminated.

D. Plans

First on the agenda is to analyze the already grown ingots using EDX and FTIR. The

axial and radial composition profiles of the ingots will be determined. Compositional
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profiling of the ingots will provide information on the effect of current-induced growth
rate fluctuations and axial vibrations on the homogeneity of the ingots ascompared with
the ingots directionally solidified under no external disturbance. A transient one
dimensional heat transfer model, already formulated using a finite element Galerkin
method with roof function, will be programmed for tile computer. Tile model will be
used to predict the variation in the interfacial growth rate due to Peltier heating/cooling
and Joule heating.

Two in-situ thermal transient measurements will be performed; one with GaSb, whose

thermophysical properties are well known and another with In0.2Ga0.8Sb feed

composition. The emphasis will be on measuring the temperature fluctuations near the
interface due to the Peltier effect. Temperature measurents in the melt during pulsation

will be implemented into a lumped capacity model to determine the heat transfer
coefficient between the charge and the furnace. The value of heat transfer coefficient will
be used in the heat transfer model.

One current-induced growth run will be performed with In 0 2Ga0 8Sb feed composition

doped with Te (100 ppm). The ojective of this experiment wiI'l" be to demarcate the

interface by passage of current across the interface. The demarcation striations will

reveal the shape of the interface. Also, by measuring the distance between consecutive

demarcations and knowing the frequency of pulses, tile microscopic growth rate can be
determined. The heater and cooler settings will be 800 and 475°Cj and translation rate

will be 8mm/day. One ingot with 20% InSb composition will be grown with alternative

current pulses of 10 amp amplitude. Different pulse durations will be tried during

growth, e.g. 3 days of growth with 60 s + and 60 s - ; 3 days of 120 s + and 120 s -, etc.

This experiment will provide information on the effect of pulse duration on the

microstructure and composition of the ingot. One ingot with 20% InSb will be grown

with on and off squarewave 10 amp current pulses. The pulse durations will be similar

to the previous experiment for comparison.
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Figure 1. Schematic diagram of vertical Bridgman SIockba,ger ingot growth
apparatus and current interface demarcation system.
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Figure 2. Experimental setup.
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Figure 3. Electroded ampoule for current interface demarcation.
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Figure 4. Thermocouple - ampoule arrangement for radial and axial temperature
profiling in the VBS furnace.
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Figure 5. Experimental setup for in-situ temperature measurements in the charge

during application of current pulse.
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Figure 6. Ampoule design for in-situ thermal transient measurements during

current pulsation.
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Figure 7. Critical G/V for contitufional supercooling in InxGai_xSb [14].
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Figure 8. Thermocouple readings in the charge and on the ampoule wall in the VBS
furnace for heater and cooler settings of 770 and 75°C, respectively, and

2.54 cm (1") adiabatic zone.
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Figure 9. Temperature gradient versus axial position in the furnace, from the data in

Figure 8.
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Figure 10. Radial isotherms versus axial position in the furnace. The origin is the
center of the adiabatic zone.
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Figure 1la. Photograph of ingot DS12-1with In 0 2Ga()8Sb feed ccmlpc>sitiongrown at
12 ram/day ampoule lowering rate and temperature gracli(,nt of ;q() to
llO°C/cm. The growth direction is from left to right.
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Figure 11b. Photograph of axially sectioned ingot I)S 12-1 mounted in an epoxy mold.

The ingot was mechanically polished and chemically etched in

.1HF:lttNO3:IH20 for 15 to 20 s to reveal the microstructure. Arrows
indicate the direction of growth.
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Figure 12. Photograph of axially sectioned DS8-2 mounted in epoxy. The ingot was
directionally solidified at 7.9 mm/day and 90 to 110°C/cm temperature
gradient. The growth direction was from left to right. The ingot was
mechanically polished and chemically etched in 1HF:IHNO3:IH20 for 15
to 20 s to reveal the microstructure. Large microcracks occurred during
etching the sample. The liquid-solid interface was near convex, as seenin
the last-to-freeze section.
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Figure 13. DSC heating thermogram of the donw material accunlulaled at tile end of

ingot DS12-1. Aluminum was used for calibration of Perkin-F, hr_er DSC.

_

I-
U)
,>-
IY.
()

l:

I_1 "N

Lfl u_
ol

[Y-- -u

(I) N
CS) t_

"': d
(_3 m cd

E

tli m _;j

c_ a:

' _ G' U
m :_ m

cc_
C)

U)

Y
.(

_[] I'-

({)

cd cJ_ , v
U) DJ 1() .

• f II) (') l
.qf

4' (] cc_
.. U} o,

IV "J-

In. ,o {'_

I " (9

:_ LL] " ,

-_: 0'} _1

(L C) (.)

c_

<UUI4}t

/
!

,/

/

/"

(}
( )

-t"

!

(,_1
U)
fl

1£'1

c_

9 ,;,

u_ |1|
f?2
:)
p.

u

1-

_ J

cl
C_
IJ'} 1'4

,i

;_ '
u_

;!

34



Figure 14. SETx4 micrograph of a cross section of DSI 2-1 showing dislocation pits. The
long marking line is 100 microns.
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Figure 15. Temperature profile in the VBS furnace measured in an empty ampoule

using a K-type thermocouple at a heater setting of 800°C and cooler

settings of 450 and 490°C. The height of the adiabatic zone was 2.5".
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Figure 16. Temperature profile and temperature gradient in the VBS furnace
measured using a K-type thermocouple in an ampoule without a charge
for heater settings of 825 and 850°C and a cooler setting of 500°C, with a
6.35cm (2.5") adiabatic zone.
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Figure 17a. l'hot(_graph of I)5,_-3, l_lo.2L;a().2qt_ fcmt coml>_si_i,_l b gr(_w_ ,_t 7/-1
ram/day ampoule loweri_g tale, a)ld 25--3(1(>C/cm t_,1)_t,,,)at_l)e g_ n,tlc)ll.

1'he growth direction is; from left to rigllt. _lhe ing(_l wa,: sandbla<_,,._! t<,

reveal the grains. Ilalf of the 111('lt was rapidly s_qiditi,,(1 to Iev,':_l ll_c

liquid-solid interface.
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Figure 17b. I'hotograph of axially scclioned it_g_f ,.,f l.igme 17a _,_mlc, d in 't"":}.

1he ingot was meclmically t_olicl_c,d amt cl_(,_/ic,_llv clct_,,t _

IlIF:IIINO3:IlI[Ac f_1" 2!1 to 25 s lt_ t,'v_,al the n_icl_,_;t_lwi,_:,. /\,!,,_x'_:
indicale the direction of growth.



Figure 18.
Photograph of DS8-4; hD.2Ga0.a<b feed conlpc_,dlio_ dilec_k,l_;_llv

solidified at 8 ram/day ampoule l_i','ritlg ra_e and _,'nlperature g_n_tieT{l
of 35°C/cm. The grm('[h directioll wn'._ flcm_ left 1o ri_,l_t.
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Figure 19a. Photograph of VI)$8-5; Inl.).gG;_I)p (_?ed C()lllpOSiti()l_, dirccli,,,_llv
solidified at 7.9 mm/d,'_v a)ld-'_'( /,m tempeiat_l)e g)adi_ql[ _)n&:]

application of axial vib)atkm l_> t)m a)))pc)ule al 2 Ft× an3 (_1 ,_))

amplitude. Growd_ direc(ion was h{,nl lcfl (o rigllt.

ii I " '
I

-ll



Figure 19b. Photograph of axially sectioned VDf_,,q-5 after sandblasting. Tile ma_kers

indicate the liquid-solid interface.
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Figure 20a.
Photograph of CID8-6; ln[)9(,a()sC;b feed composition, direcli,,uallv

solid!fied 2 under application }o-f [{) al_p qquare-wave dc currenl (1_'
amp/cm current denqiiv) h,r 96 _ < ,,,_ a,,-_ v,:- _ - --- ,", - '- .... ,
r ,, . • • . • .... ..... '. , LtVt --U.O > k'II. L-l-ll'l(_llt was J_aggr'¢l
xrom sono to melt (i.e. sc4id [+l pole aJ_.t nmlt [-] pole).
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Figure20b. Photograph of CII)8-6 after sandbla,qting to reveal grains and twins.
Growth direction was from right to left.



Figure20c. Photograph of axially sectioned and sandblasted CID8-6.
direction was from left to right.
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Figure 21. Ampoule resistanceversus time. Pulsation was initiated after 40 hours of
translation.
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Figure 22. Thermocouple readings in a melt of In0.2Ga0.8Sb during and after

application of a 10 amp dc current pulse for 30 s.
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Figure 23. Thermocouple readings in a melt of In 0 2Ga0 8Sb during and after

application of a 10 amp dc current pulse for 6"6 s. "
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Figure 24. Thermocouple readings in a melt of In 0 2Ga0 8Sb during passage of

square-wave 10 amp dc current (15.7 ampTcm 2 current density) through

the melt.
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Figure 25. Thermocouple readings in a melt of In 0 2Ga0 8Sb during and after

application of 10 amp alternating dc current'pulse's for a duration of 60 s,
over 240 sec. pulsation range. (Steady state temperature in the melt before

passage of the pulse = 808.9°C. Maximum temperature in the melt during

pulsation = 811.5°C).
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Figure 26. Jump in thermocouple reading (from 716.3 to 737.1°C) in a melt of

InSb-GaSb during application of a 5 amp current pulse. This jump is
attributed to exposure of the thermocouple junction to the melt at the time

of current passage.
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3 Ditfusion Controlled Conditions - A Numerical Model

3.1 Background

Tile non-dimensional eqnation that describes tile concentration distribution in the melt is:

02C I OC 02C OC
+ + + Pe-xz = 0, (3.1)

OR----g -#-_ 0 .5

where

RV
pe - (3.2)

D

Essentially two strategies have been used to solve this equation: finite element analysis

and finite difference methods coupled with a coordinate transformation. Given the recent

adwnces in memory, speed, and software for personal computers, the finite element method

may become the dominant method to solve any problem for a non-rectangular domain, no

matter how simple that domain may be.

The curved melt/solid intcrf_ce poses a problem for finite-difference schemes. If a regu-

larly spaced grid used, interpolation is required at the interface. This makes programming

a nuisance, rio avoid interpolation, a coordinate transformation is often used. The classical

transformation for this problem was used by Landau (a3) for the heat conduction equa-

tion and later for diffusion by l)uda et al. (3,1). If the interface is described by It(R) the

following substitution is made into the diffusion equation:

e = Z/II(R) (3.3)

= tt_ (a.4)

This transforms the domain into a unit square. Using these substitutions, it is easy, although

tedious, to obtain new equations for the differentials:

OC OC & tiC

a_--7 - & a_, + a--_- (3.5)
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02C

OR 2
0C / 2 0c 2
Oe OR 2 + _OR,/ Od

Of 8C 2 OC 2

-t 2 0R i)_i)A I OA 2
(a.t;)

OC OC Oe
N

OZ Oe OZ
(3.T)

oc 2 oc2(&) 2oz 2 - Od

After making the appropriate substitutions into the original diffusion equation, a linear,

homogeneous, partial differential equation with variable coefficients is produced. A banded

coefficient matrix is produced in the discrete problem. In the previous discretization scheme

a "five-point star" was used in the bulk melt, aM a "seven-point star" was used near tile

interface. In this discretization, tile mixed partial derivatives generate a "nine point star"

that is used throughout the entire melt.

Other more sophisticated transformations stretch the solutal boundary layer in addition

to transforming the domain into a square (35). Stretching transformations have the benefit

of reducing the truncation error associated with the discretization in regions where the

concentration in the melt changes rapidly with distance.

3.2 Discretization Used Here

The discretization in this work uses constant radial and axial step sizes in the bulk of tile

melt. Near the interface the radial step size is maintained, and the axial step size is adjusted

so that all grid points are either on or within the domain. The discretization used near the

interface is shown in Figure 3.1.

The non-dimensional equation that describes the concentration distribution in the melt

is given by equation 3.1. The boundary conditions follow:

At the top of the ampoule, Z _ 2, a fictitious inlet is used. This inlet is placed sufficiently

OC
far from the interface to satisfy _ = 0 for all R. Conservation of mass at the inlet yiehts
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MELT/SOLID INTERFACE_

Z

r

Figure 3.1: Discretization scheme for interfacial region.
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the following equation:

Radial ,_ymmotry is ass,reed,

OZ - /'c(1 -- (:). (:l.q)

so lhat at l,h_' walt ;)a.1 at (h_" renter nf 11., amp_ml_,"

i)( '
-. O. (:_. _)

OR

Assumin_ constant volumetric l_roperties in the solid and the liquid, a ma,_s balance at th-

melt/solid interface yields:

0C
l)v- + L,C = l;,t.(7, (:_._ 1/

_/Tt

where V,_ is normal crystal growth rate. The normal derivative of concentration a! th,,

interface is:

Where the unit normal vector N is:

-- = f", _ ( (:!.t,,)
On

(1 + h_?)_/:_ (:I.l:_l

llere ez and en are the unit vectors in lhe axial aml radial directions, and ht_ is th,, sl,,l,,.

of the interface.

From these equations, the I)oundarv condition at 1he interface can b_, (,::i)t(,ss(,d :_:

0II OC 0(7

i)I_ i)/¢ t _ :: 1',(1..,_ - 1)(?. (:{.III

The finite difference approximations of the derivat ires are found using 'laylor series ext):_n

sions about thei0_ and jo_ points. In the bulk m_'lt the tinite(titferem,, equations for th,'

first and second derivatives and lh(qr corresponding Irnncation errors ('1'1.;) are:

/)(;i,.i .... C_+_,j - C',__,.i -F 7"E (2. I _)
0 I? 2h

h 2 O (,(Pl)
(;{. 1¢;I

02C;i,j

O]( 2 1_2
(/i4 _,j - 2('<: t (i--_,j + 7'E
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7,E< h2 IO'IC(P2) ]• -- 1-2 01_ 't , ]_i- 1 _ P2 _< Ri+I-

c',o

(:L1£)

i)( ,'i,i _ ,'i,.i t- t - ( .',.7 i t 7'I,;
ilZ 7J,"

k2o ,)lTE < _ OZ 3 o_ ' Zi-1 _-- Q1 _-- Zi+l
(3.?(I)

02Ci,j Ci,j+l - 2Ci,j nt- Ci,j-1
OZ 2 - k2 -- + TE (:_.?1)

TE < k2 [[ °q4C(g2) [[1--2II II0z4 , z,_, _<o2<z,+,._
II II oo

The finite difference approximations are substituted into the continuous problenl (F;q.

3.1). One then solves for Cij. The equation for (]i,j ill the bulk melt is:

Ci,j = _- -}- Jr (:i+l,j + 2 2/_R Ci--l,j

The boundary condition at the wall and the center of the ampoule, 0cal---7= 0, 3"b'ld_

Ci+l,j = Ci-l,j. The appropriate substitution is made in the equation for (fi,j at the _v;_ll

or the center.

At the top of the ampoule, a backward difference appro:dmation is used for 0c Thiag-27"

is (tone so that all the grid points in the discrete l)rol)lem lie within the (I,mlain. llt,lil_,,

at the interface, this is done merely for convonio'ac,,. Ai. lho interface, as explained hf'l_w,'.

programming considerations require that all the grid points lie within the domain. Tim

equation for Ci,j at the fictitious inlet of the ampoule is:

2 - !c .
Ci,j = (3-Jr PP_) {PcqL _.Ci.j_l 2//¢ ,,3_2} (::L_..,,,

In the region near the melt/solid interface, th_'_ axial step size is varied to to av,)id

interpolation. Again, Ta.ylor series expansions are used to determine the finit(, (tilli,r(,m¢,
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approximations. Near the interface, the axial step size is some fraction 0: of tile radiM step

size h.

The first and second derivatives in the axial direction are:

OCi,j

OZ

0_2

hal (al + a2) CIJ+l

o: 1

- ha2 (al + a2) Ci'j-1

0:2 -- Ol 1

hal0:2
--Ci,j + 7"E (3.25)

0:20:12- ¢'tl_'i
TE<

- alto:2 6 ....OZ3 _o' - -

Note that 0:a and a2 are weakly dependent on both the curvature of the melt-solid

interface and on the radial position.

For II (It,) = - 17,2,

13 O'_C(G) ] (3.27)

02Ci,j

OZ _ 2 { -2*2,(0:___- 0:__!+-_,_:_,(0:____+ 0:,) c_,sh2 0:10:2_3_4[(0:1- 0::) - (0:3+ 0:4)]
(_1 -- 0'2

+ -_ (-., - -3)[(-, - -_) - (,_ + ,_)]c_,j+_

_ "1 -- O_2

0:3(_ - _)[(_, - _:) - (-_ + _4)1C_'j+_
a3 + a4

- 0:_(0:1+ _)[(0:, - _) - (0:3+ 0:.)]c;,j+_

0:3 Jr- 0_4 }- _2 (,_ + _2)[(,_ - ,_2)- (0:3+ _4)]Ci'j-_ + TE, (3.28)

where

TE <_ (._ 0:_) (_3 -t- a4) + (a2 _ e34)(,_, + 0:2) 12 OZ 4 oo'
(3.29)

Zj-i <_ (2 <_ Zj+3. (3.30)

Again, -1 to "4 are weakly dependent on interfacial curvature and radiM position.
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For II (R) = -R 2,

7 , <_ --_ Oz 4 .

The importa.nt tiling to recognize is that the l run(:ation error is not only bounded, but is

also second order for all interfacia.l curvatures, l:or the ease of tile planar interface, 31 = 32

and the finite difference equations reduce to those ,sed in the bulk melt.

In the melt in the interracial region the expression for Cij is:

Ci,j = U + P_ h_2_, - h-7 _,_2_ [(_, - _=) - (,,a + _)}]

{ Ci+l,j + Ci-l,j 1 Ci+l,j °c Ci-l,jh 2 + R 2h

2 al - o_2

_ _ )]C;.j+3+ h_(_ _)[(_,-._) (_._+._
(1' I (1' 2

- h 2 aa (c_4 - aa) [(_, - _2) - (eta + _4)] C_'j+=

-1

X

2 ¢t3 + 34- _,,, (_, + ,,_)[(,,, - ,,_) - (<, _ ,,.,)]

- _=(_,+,_)[(_,-_=)-(_,_+,_)]

a2 ,_)) Ci..i+l- PeI-_1 (,_ t

c_, ) }+ Peh_= (oq + 02) Ci,j-I

(3.32)

Figure 3.2 shows the values of C used at each grid p¢fint near the interface.

It is important to recognize that the coetticients in the above equation are a function

of It and axial 1)osition only. In oth,,r words, for a given Z the values of the coelticients

are constant for all r. This feature can be taken advantage of in the algorithm used to

solve the problem. When an iterative procedure is used, such as Jacobi or Gauss-Seidel,

the coefficients nee.d only be calculated on tile tirst i_eration. Once their values are known,

they are stored as a one dimensi(mal array. This pr,q)_'rty of the discretization significantly

decreases the time needed to solve the problem. The. total number of grid points is given

.by:
Nbl

M(N + 1)+ X _-
i= !

Here M is the number of axial steps and N is the number of radial steps.

(3.33)

If central difference approximations are used al the interface, some mesh points will

be outside of the domain. Points that lie outside ()f the domaAn are often referred to as
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h

a3*h

I
O(i,j+3)

I
C(i,j+2)

I
C(i,j+l)

al *h

C(i,j)
----_'_C(i-1 ,j)_

MELT/SOLID

C(i, -1)

/

a4*h

_ C(i+l,j)--

a2*h

Figure 3.2: Values of C used at each grid point in discretization near the interface.

59



"fictitiousl)oints." NormaIlythisisn'ta probh,nl, a.:,'xl)ressi,ms li,v I1,, L, l,,,iT_l_ at,,_h,tiv,'_l

from the boundary conditions. I[owew, r, l)e('auso of lt,e unique dis_v,'li :_ti_m _rh(,m_, _l_,,d

here the fictitious points pose a probh, m.

Figure 3.1 shows that ill the intorfacia] r('t[i,m lh,' numl),'r ()1 t,,' I, i,,,i,*, in :_ r,,w is

one fewer than the row above it. This seemingly innocuous tealuv,., _,,,:,,:: ,,;_ch liclili,ms

point to be a function of all fictitious points aboveil. This destro._ _},. J,:),,I,,d slrucl,l,,

of the coefficient matrix, and makes it extremely difficult tosolv_'tl,, ,ti ,,,,liz,,d '"lu'_i"t_s

directly. This problem is shown through the followin_ example.

Consider any point which is on the interface but not at the wall .... (,,1,,r. 'l'his p,4nt

is shown schematically Figure 3.3. Two fictitious points are(lirecfl'_ :,:_(,iaI,,J _vifh this

• ,q ,

point. CD is the external point created by the central dill'(,renc(, apl),(, ,,,_a_i_m t,)I 5_i ( 'r:

is the external point created by the central difference, approximatiol) [,,T '[:i. :\ rl ,'xl,I,'_si,m

for CF. is found using the interracial boundary e(l_lat i,m (3.1 4):

(['E1
a'l \ lm_,vl + ]','(k,.q- l) (7,./

- 2eq (-"i4 l,j 4 2_1 (.'1_

t

! ;_ .I I

The problem with this discretization can now |)o s¢.(,n. .lust as ('_ i ;, P,¢,,thm ,_f ('i

CD is a function of Cc, Cc a function of C,_, and finally C_ is ;_ f,,,, ,i.,, ,,t lh,, wry lirsl

fictitious point C.4. The latter point is found using fly, bo,]ndarv ('(I _:' 'i,,,, :_ !h,' i,_l,,_I;_(,.

coupled with the boundary condition at the center at the aml)oul<

OC

OZ -- I'c(/,¥,_ -- I1(" (:g.:v,)

From W]l(_llCe_

-l"}g2('_ ' + (22) ((1_2--,l I

For COmld(_t(,n(,ss the final fictitious point, (' '_

2h,,_l

(ct:?- I))Cij4 \7(_ ,, _ (:_.3(i)

h h,, iu_,'tla,,' al Ilw

ampoule wall, is specified by:

whi,l_ is ass,)rial,_l _vl

1',(I.',_ I)(.' (._ :l;)

Ca = -2ha_ 1', (/% - I)_',,_ + (_'
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Figure 3.:3: Fictitious points th,_t are generated when ceutratl dilletch, " '1't 'w''×im:tl'i°n:; are

used at the interface. The fictitious points lie outsid,, of the domail_
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The above problems are avoided by using f()rw,_rd tinite diflef,'r_,' ,l'l,r"×irna_i('n_ to

the interfacial boundary equation:

OC

OR
"" 3( .'i,j ' (.'i+2,a= t-'l_ ,_1,: (:I.:V.))

0C 1 { (_'1 , tr'3 ,-- . r ) J l

c_1c_3 ,,j + 7'1':

h 2 i):'_( .'(:,:_)

2'.r: _<,,,<_ _-7, ,_7:: oo

Zj <_ Oa <_ Zj _?.

t 3._1())

Using the above difference equations amt the bouml:_ry condition at ll,, i,_t,._taco (:_.1 1) an

expression for Ci,i is found:*

(/i,j - h I 2h -t h¢rl,__ t I'c(I,:,, i I) o:d_
¢

(:_.,1:_)

In this project, three methods were used to s(,Iv,, lhe system (d (!i_, ,,,_,, ,,,lunti,,ns: lwo

were direct methods, and one was iterative. In one method finite ,litl ..... _,,, ,,qualitms are

written so that all points are within the domain. This g:enerates a t_;_,,,t, t _,,,,llici_m_ m,:lrix.

The matrix is inverted using Gaussian eliminati_m. Although lb, _,_.,I ,: i_'t _li:_,mally

dominant, pivoting was not necessary.

In the second case, central finite difference eqUs_lirms wer,' us,,d ,,_, ' I,, t,,,u _d;_ ri,'._. 'l'his

process, as exl)htined above, generates ticlitious poi,_l>; which ch;_n__,,,. _h, _,:_u,l,,,I ,',,,,lti,i,mt

matrix into a sparse square matrix. This increa.s,,s lhe computer l i_, _ ..... !,.,1 t,, ,':(d v,, Lh,,

problem greatly since the time zinc(led 1o invert a. square matrix is t""l"'_li"_al I,, il: ,,rd('r

cubed. (l:or a banded matrix the time to invert it is proportional 1,, il : ,,rd,'r s,luared.)

"This equation needs to adjusted wh,,n the iminl • -- I h is _eache,I. At th ,' I"""| _ , * '., i_: ,ml,_i,l,' of

the domain. This is accomplished by noting that:

0(' , : (I;)17 ,

From this relation one ol)tains (.,'i+2,1 = (:i,3. The al)l)r_l_tial,' sul,stilution is ,,' ,,b ,_, th,. ,.,iNa_i,,_, :,t lh,'

interface.



A highlyetlicient Successive Over Relaxation S()R method is th,, _t,i_,t t,,,hniqu," used

to solve the discrete problmn. In this moth(_d, the discrete e(tuati_m_; :,T,, i,,;_ltanged 1.(_ tim

form Ci,j ..... The equation for Ci,j is solved at <_ch mesh point in tt,. ,t,mla.in aud ils

value is "corrected" using the followin_ pmcedur<

,,3 -'_ (1 -- 6d]_i, j -_ O.,(_i, j (::_..1.1)

Where k is the iteration number.

The speed with which any iterative method conver_es is directly r,,!;,_, ,1 !,, how w,dl the

initial guess approximates the actual solution. In the SOIl method u: .... i *h,' ,,m(-(,ntrali(m

field is initialized using the one-dimensional diffusion equation. '1'!,,,_ _;,.v,,wal thous:_nd

iterations are performed using a coarse axial and radial step size ell). 1. _'_ J,, ,, ",/)t)0 it(,ra ti_ms

are performed or when the maximum residual falls below 10 -6, the i,_ ,_ (,_lllw,, is slt)pp_,¢l.

The axial and radia, l step sizes are qua.rtered. The v;_lues of (:_mt ,'nil:, I;..,i :, I the n,,w r "(I

points are estimated with linear interpolation, and the SOR is conti,,,,.,1 ,,til _he l_revitms

stol)t)ing requir(,nwnts are met. 'l'hr(,_, t_, six ht)ur._; ,m a Zenith Z "' t , ,llll)ll!p I (wilh ;In

80287 math co-processor) is usuMly enough time to obtain a solul i,),

The accuracy of the results can l)e checked I, 3, c,m_l)aring l.bo r_,:, .... tl,,.. :_I Z _ 1,

the flux through the internee (defined by Z = H(R)). For steady_sl;_,, _ ,,_,,Tilions lhe lxvr)

fluxes must be equal since mass is conserved a.t th,, iuterface. AI Z ... _h,, axial ms_ss

flux is given by:

(_q,z A (:1.45)

where A is the cr_,ss-sectional area oftlw a ml>oul,,. AI tim m,,ll/,_di,t i:,t, II:,,,,, II1,, a,:i;_l

mass flux is Kivon by:

l/k_ ()(R),I.I (:_. 1_;

For steady-state (:ondtions the two tl,xos are _,(lual ;)tM the expressi,u_ t,,_ _ ' i': t_,iv_,l_ I_v:

L' /C = Ic,_q C(I{)R,II_ (:_.17
• o 2" lt(lCJ

= 1

The error in tim n_ass lmlance is always l.,low 5_7,.. ar_,l usually I.,I,,v.



Thespeedof convergencewasfoundloI)eextl('m_'lysensitivet,():;wt:,llrb;_nl_,'siu 0.,;o"--=-

1.7wasusuallyused.Any factor whi(:hincreasesradial segre!_almt_(i_,','tI:_,'ial(-urva_ure,

higherPecletnumber,k_q dill'(,rent from ! ) IIOC('S.gilZ, II"S lhe usp ()f :) : li ,hllv .';lU:_ll¢'l" valll,'

of to. ]{owever, in all cases 1.(_5 < co <_ 1.7,r).

(;1



4 Experimental Procedure

In this project nat)hthalene crystals that were d,,pt,d with al)pr,)×i,,,;,t,'ly 0.3% azulene

were grown using the vertical Ilridgm:_n-Stockl_ar_,,r t(,chniqu,,. ._11,.1 Ih(, soli(liticatiol_

process wa.s c(,mldet(,(I , the axial and ra,tia.l disl ribuli_m of a.zul(,m, in lh,, u;_ I,Iii hah'ne matrix

was measured using gas chromatograt)hy. Convection in the melt wa_ ,,k_,,rw,d through a

transparent furnace under the same thermaJ c(,mlili,ms used t(, r,;_,v, _h,, crystals. (l"or

details of the visualization procedure refer to ref,,r,,nc,,s 25,26.) In ('h:,l,t,,, 5 the nal uvo o[

the convection is correlated with the segregation in (he crystal.

Scintillation grade naphthalene and sublimated azulene were r)l,l:,ir),,d from Aldrich

Chemical Co. The physical properties of naphthalene are sumnmri:_,,,t ir_ ]ahle 4.1. The

phase diagram for this system is given in Figure 4.1 (36).

Physical t'roperty

Therma.1 l';xpansi,)n,/_ 7.75,q *10 I [(-1 (1:,)

Dynamic Viscosity, t_ 8.25'10 -:_ g/cm.s

Melt l)ensity, p_ 0.!)77 _,;/'(m 'a

Solid 1)ensity, p_ 1.15 g/cm a

Diffusion Coef., I)

Segregation Coef., 1,¥:_

Schmidt Number, Sc 42'2

GrasI)of N_m_ber, (Ir 5012L_'1' 1¢ -1

(15)

(1';I

(Ir,)

(:I!:1

The dilfusion coefficient of azulene in molten naphlhalene was c:_l .... t,,,1 ,_:_im_,_a corro

lation that is based on the Stokes-Einstein equali(m, t"or small c(,t,c,'r_!w:,ti_,m, _[ ,I itl 11

the diffusion coefficient DAB in cm2/s is given by (:17):

DAB 7.,1 * lO -s(('1_:_1_)_1"27'= _l.I)
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f'Cl ttT_jll,nr

Figure 4.1: l'li;l_se diagram for the _/zlllene/ll_qJhlh;ll_,lie ,;),,_i._,lli (:if;! I ll_, ;i._lll,,m, rr>m'<,li-

tration is glveli iri weight percent.



ltere 1)Ais the molar volumeof tile solute in cm :* _z n,_le I as a ]i<lUi,1 :,1 its m_rmal I,fil

ing point (the molar volume of naphthalene was used as an approxi,_:_ii,m fi_r the mola.r

volume of azulene), p is the viscosity of the soluti_m in centipoise, _,,,r i,_ an "associati_m

parameter"(h)r this system it isl),and Tis theabs,_l.t(.'temperatur,'. I',,_ dilutes,dull(ms

of nondisso<:iating solutes this correlation is us,ally ,_,_,,(_<lt.o within 10":'

A photo of the experimental set-up is shown in l:igure 4.2. "/'h- t_,.:_l;n_ section was

made using large diameter Pyrex tubing and Nichr¢_me wire. The, r,,,it_ l,,_rtion el lh,,

heater consisted of a tube 23 cm lon_. nichromo wire was wound _,w, _b,',,utside oflhi,_

tube at a pitch of 3.4 turns/cm. Inside this tube w,_: placed anoth,,r r, hi, h tit. snugly in

place. This was done to distribute the helical heat source. This entire (,,_1 ruction was slid

inside a third tube. The latter tube served to reduce lhe hazards of el,,, t ri,:_l sh¢)(k and 1_

decrease radial thermal asymmetries a l the ampoule.

A short booster heater 6 cm long was c_mstrucl_,_l by windin_ I_i, 1_,,,,,,, wir,, _11 lh,,

outside of the third tube _t its base. A Pyrex tube (i (:m long was pl;_,, ,I ,,',,,1 the t)_)_t_,l'

section, l_ all, the nmin section ()f Ih_' h,'ater wa_ _'_,_::trucled tr_)m fl_ ..... , _,_l_ ,'tllli_" ]'_,'r_'y:

tubes and the booster section from four. By changin_ the power to ¢t,, _...... I,,r h,'a_or lh_,

axial temperature profile in the heater could be chan;<ed along; with _I_, ,,,_\',,cti_m in lhe

melt.

Anti-freeze was circulated through lhe cold zone with a heater/p,_Ir_l,. \Vh,,u leml)e_a

tures below room temperature were desired, the anli-lreeze was coo],,,l : il h :, flow-thr_m_:h

refrigerator thai was connected iu series with the, pump. \Vith lhi_ v_:_,.rn a rang,, _f

cooler temi)e.ratures of-40°C _< 7'c < 5(I°C couhl t)_, a.cldeve(I. A l,'ll,l_,qalure ran_'_,' ,d

20°0 _< 7c < ,10"C was commonly us_,d. This 1)r_w,d to I)e cold ,.,_,,,,!,h _,, tn;_i_tain a

stee.p te,nl_,'ral.._e _ra<lienl. a.nd pt'evet_l c_mslituli,,nal super<<_,din ,. i,, lh,. ,_,'ll. \\h,'|_

temperatures below 20 °C were desired, thermal stress caused cracki+_< ,,f Ib,, r:rystal.

The ai_poules used to grow the. crystals were l'yrex with an inm,t ,!i ,_t_,,_,,r of 1.56 cm

and an outer diameter of approximately Ig ram. In ¢,r_le'r to fav¢_r seb,,l ;,.n ,,f a singl_: gla_itl

during crystal growth, the amI)ouh, had a narrow c,m_riclion al _mc ,.,,I I !,,. c_msl ri_ !i,m

was typically (i cm long with a. uniform _mt,,r diam,,1,'r of 0.5 cm _,_...... 1't* '" i_nal,,Iv :I ,m
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Figure 4.2: ])holo of set-up usc'd to gT,)w crvst,ll_. It was taken l)ri(,t i,, lh,, :,,lditi,)l_ ()t lhe

booster heat('r.
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of its length. The constriction began apl)r(_ximat,'ly :l cm from tile I),)_,,,n ,)f tim amp,ml,'.

The ampoules were typically about 60 cm lon_. A s(:lmmatic of th(, a,npoule is shown in

Figure 4.3. I)uring crystal growth, the ampoulos wore sealed at the t_)p with a size "0"

rubber stopper.

The degree of crystallinity of a mat('rial is oft,'n hard to judge by visual insp,'ction ah,n(,_

However, N. Karl reported that a tapered ampoule, such as the one that was used here,

caused a single grain to be selected in the great majority of organic crystals that he I_rew

(36). lie also reported that low angle grain boundaries appeared as striations in the crystal.

Most of tile crystals that were grown here were fr('c t)om striations. 'I'h,,v w,,I(, transpar(,nt

through-out except for the final few millimeters at. the end. At tt,' _,nd, the boule wa_

opaque, and very small grains characieristic of sut,('rcooling were _)b,,;,,rv(,d. Wfien grain

boundaries were observed, they ran parallel (or nearly parallel) to th,, _r(,wth direction.

In such occasions, the crystal would I)r_,ak al):trl al i.ll(' grain I)oun,lz_v_ if hz_mllt,d t,, ;_,v

degree. A discontinuity in azulene concentration was observed in only ,m,, crystal, but a

grain boundary could not be seen.

The ampoules were rinsed several times with d@,,ized water to clt, a,L th,,m. They wet,,

then soaked ov(,vnight in a sol.film c_,ntaining,,(i,:_? parts by volum,,,,f,b,i,,l_iz_,d wz_t,,t.

concentrated llCI , and concentrated lINe3. Aft,r this they were again rins(,d sev¢,ral tiTn,,s

with deionized w;rter followed by sev(,ra] rinses wit h sp,,ctrophotom(q ri,' !,cad(, a((.tcmo. 'I h,'

ampoules where then stoppered until used.

Prior to growth, 20 g of naphthalene and al)l)r_ximately 0.05 /zran_s c_f ;tzuleno wor(,

added to tile ampoule. The material was melted with a heat gun and ._hak,,n in ord,,r t_,

homogenize the melt. The aml)_m]¢' was l)]ac(,d i1_ :_ preheated f,r,;,,,', ;_t_,l was alb,w,,l

to equilibrate h_r approximately (i hr Imfore growth twgan. After th,' _.r_wlh process was

completed the ampoule was cut a few c_,ntimeters abcwe the top of tl,, ( _vslal. The crystal

was removed from the ampoule by carefully heating the ampoule with :_ h,:at gun, causin_

the outside surface of the crystal to m(,lt, thereby alb,wing it to slid¢, ¢,_t ¢)f the ampoule.

The crystals were sliced with a small tino-t,_)th,,,I saw. If ilo(:_,,,,'_;_ry, tile ('cyst;i] ',k;_,q

gently sanded with fine-grit emery paper t() make tim surface of tlw ,T _;l,a] sln_,_lh. ,qam
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Figure 4.3: Schematic of tile ampoule used to grmv crystals. The constriction near the

bottom favored selection of a single grain.
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pleswerepreparedby Scratchingtile crystal with a melting point capillary tube in order

to gatherapproximately0.1 mg of material. The tip of tile tube was then dipped into spec-

trophotometric grade acetone. Capillary action drew approximately l0 to 20 microliters of

acetone into th(, tul)('. After th{' s:_.ml)h' dis,4olw,d ((mll}l(,tely , 0.8 mi('rolit{,r was withdrawn

from the capillary and injected into tile gas chroma¢ograph (GC). Samples were gathered

along a diameter of the crystal at five nearly equally sp_ced positions. In several crystals,

two additional samples were taken near the edge of the crystal perpendicular to the line

formed by the five samples.

The GC used w_ a Perkin-l"huer Sigm:t 2000 g;ts chromatogral}h equil}ped with atlame

ionization detector. The column used was 6 ft (1.8 m) by 1/8 in (3.25 mm) ID stainless

steel . It was packed with 10% Carbowax 20M on Cl_romosorff W-lIP 80/100. EleveJ}

minutes was required to completely elute the sample using a column temperature of 190

°C. Nitrogen wa,s the carrier gas.

A chromatogram of a typical sample is shown in Figure 4.4. It is a plot of the response

of the dete(:tor, measured in w}ltage, v{,rsus (,lltti_}n time in minutes. 'l'h(, {,lution times f_,

the components were approximately: 1 minute for acetone, 4 minutes for naphthalene, and

9 minutes for azulene. In Figure 4.,_, only the naphtllalene and acetone l)eaks can be seen,

In Figure 4.5 the full-scale height has been reduced approximately 500 times. In this figure,

the azulene peak is visible. Nole the excellent separation of the naphthalene and azulene

peaks. The peak areas were calculated automatically by the instrument.

The GC results were converted to mass fraction using:

,4 t

"'

where A is area in the chroma, togram {(l(,termined numerically by th{' inslrulnent} and ttt

is the detector's flame ionization yield for component i. Detector nonlinearities caused by

interactions between components are contained in the term f(m). }'rovided the variation

in the total mass injected is small, and xl is less than 1%, f(m) can be set equal to ]

(38). Th(' i{miz;_1ion yield fact{)rs w{,r(, found I}y (';llihraling the instrum('ld, nsing stan{lard

solutions of azulene and naphthalene in acetone. (The ratio of the ionization yield factors

and the data from the (;C fl}r (,a(-h r,n are tziven in Appendix A.)
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Figure 4.4: Chromatogram of a typical n,_I)hthalene:_zulene sample. 'l'h.' :,, ,,t,,11,' l-'_,k is

at 1 min and the naphthalene is at 4 min. 'File azul('ne pe,_k, which ,,_,'f I.... ;,,,tt ,_t t hi_;

scale, is at 9 minutes.
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Figure 4.5: Chrom;_togram of a typical .aphthahm¢_ ,_zulene sample wil I, :t t.11 Iwig;ht ,_cate

of 10mV. Note tha good separation between azulene aml naphthalen¢,.
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_ Naphthalene

1 197000

2 171000

3 199000

4 191000

5 197000

6 195000

A roe, Azu]em' A r_'a,

() 70

951

()!10

Azulelw Ma:',_: I"rar.

6.7,1 _ II) _

6.92* l I)

(i._2 _ 10 _

7.(12 _ 1(1 "

6.96 _ lit

1110 T.09 _ 10 :_

Table 4.2: Determination of tile relative error in procedure by r*,l,,,;J_,,dly analyzing lhe

same solution.

An estimate was obtained of the relative error of the chronla_,,..,!ir:,l_hi_ l)rocedur( ', i.e.

the variation in the results when the same. samf)l- i_ ;_uMyz(.'d rel_('at,',lly '1 ,, ;_pl)I_,xinlnlelv

20 ml of acetone was added enough naphthalene aJ_d azulene to pt,,,luc,, a s()lution simi-

lar in total mass dissolved and in rolaliw,. ('()m,'nl i;_li,)ns to tim! ,,t,l:,iu,.,[ fi,,m a 131)i(al

experimental run. 0.8 micro-liters of this solution v:ere repeatedly ilLi,.clod and tim ('hro-

matograms obtained. The results are noted il_ 'l'_t)le 4.2. The l(_l:_l n;_l)hll_:)lmw alv;_.

AN_ph., was 1150000, and the tol.M azulene area. A..,-., was (i39(). l"l,,in lh,>e r,,sul!s: iho

mean azulem, ma.ss fraction was given by:

.,1.4 :
_Az.

AA:. + (I.796 • ANaph.

= 6.93 _ 1(1 :_

Twice l,ho maximum dovia, lion fr()m (ho m(,an iu Ih,':;e runs was Y_';7 ,,I t I,,, lllOHll. "l'hi_i_

taken as a conservative estimate of the relative (,rror in this l)roce(t,l_*'. In ,)_ her wor(I._, the

mass fractio, and its error were ca.lculat(,d nsin_:

A, ( A, ) (1.3)
Zl -- AI dl- jlt/_l J12 _:2 (/.(15. .'11+ _e/qZA2

The absol,t,, error, the error in the ('ah:ul;_t_,,I w,_ass fraction ,,,,_ ,:_ t l,,. ;,(¢ual ,_;_ss

fraction (also called systematic error), dep,'nds _m _h,, calibraJiCm I*, ..... I,l .... , u:-.,I \Vl,m
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usingquantitativeGC analysis,internal standardsshouldbeused. *l'w,) st)lutes of k,,)wIJ

concentration should be added to the acetone. Their properties with respect to gas chro-

matography, e.g. flame ionization yield, mot)ility _m the column and ,'h,,mi<'a,! stability at

high temperatures, must I)e the same as naphthah,n(, and azulene, ll(_w(,v_,r their ret('ntitm

times must be sulliciently ditterent so that no two peaks overlap in lira (-hroma.togram. Us-

ing this method, a negligible experimental error is oblainable. Unfort,y_at_'ly, the (moHn,).s

mass of nal)hthalene in the samples precluded this method.

Assuming the flame ionization yields in equation 4.1 could be precisely determined by

calibration of the instrument, the GC analysis used here would be the saint, as the inlelnal

standard method. The reason one calibration wasn't enough is b(,ca_rse the column aK_,s

with use, and the mobility of materials on the column changes. TheTefore, it should b(,

recalibrated before every analysis. This proved to be impossible sim:e the (_(_ had an

intermittant electrical problem that worsened as the instrument wa.rm,'d up. l'r(,cious Tur,_

couldn't be spared for recalibration.

For this reason all radial comt)osition prolil(,s w(,re scaled by th(, tu,,asu1_,d meat_ (_m

centration of each crystal. In this way, moderate systematic errors were eliminatt,d and _ht_

actual error in the results, when scaled, was a cons(,rvative 5% of the calculal_,d valu,,. If

no calibration procedure was used, the azulene c(mcontration wouht b,, calculat_,d by,

,'l I

:r: -- (I1)
el 1 -I .-Ie

The difference between equations 4._ and 4.a represents an upper b(,und rm the abs(dulr'

error of the determination of the azulene concenlration in the crysl.nl.
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5 Results

5.1 Diffusion Controlled Conditions - Numerical Results

Tile calculation of the amount of radial variation in composition in ;_ crystal (also called

radial segregation) during solidification under dillusion controlled ('_)n(liti_,ns is straight

forward. The diffusion coefficient and keq are tire only physical prol)erties that influence

segregation. As shown ill Section 4, these values are accurately known for the naphtha-

lene/azulene system. When the shape of the melt/solid interface and the growth rate are

known, tire shape of the radial concentration l)rotih • in tile crystal can he calcula.ted. Iinw

ever, the effects of these parameters may be difficult to separate using composition data,

esi)eciMly since segrega.tion is ;rise inlluen(:ed I)y ('_)nv_,ction in the m_,ll.

Without a strong magnetic field or low gravity, diffusion controlled conditions are dif-

ficult to produce in the vertical Bridgman-Stockharg(wcrystal growlh Im'hni,lue. Tim g('

ometry of the Bridgman setup insures that radial temperature gradients, and theref()r,,

convection, are nearly always present in the melt. Because of this. the distribution ()f

dopants in the crystal is usually influenced by convection in the melt. llowever, the degree

to which convection in the melt played a role in concentration variation._ in a grown cry,_lal

can, to some extent, be estimated by calculating tire radial segregaJion that would have

occurred had convection in the melt not been present.

Figure 5.1 shows the influence of l)(,(:let number on the radial con(('nl ration protile t,w a

convex interface having a dimensionless amplitude of 0.25 with k¢q < 1 ;and no convection.

The dimensionless amplitude of the interface is (Iotine(l:

IH(l_ = _)- H(l_-: 0)1 (._1)

where R is the radial position nondimensionalized by the ampoule's radius. In all results

-presented, tire mass balance at tile melt/solid interface is satisfied to wilhin 1%. As shown

in Figure 5.1, the radial variation in composition increases with l'ech,t number. As lhe

Peclet number becomes large, the change in COml)osition at the interfaro, near the center,

is reduced, and most of the change in tile radial composition protile is al the ampoule wall.

Tile is because the axial concentration profile in lhe melt is steol)eSl ;_1 lh_, wnll when lh,'
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Figure 5.1: Tile influence of Peclet number on the radial composition at the melt/solid

interface, k,q = 0.3. The interface is convex with an amplitude of 0.25.
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interface is cCmv_,x.

For sulticiently low Peclet number, (here is no raclial segreKation, _<'_',:,,dl,,s_ +_finterl,wia]

curvature. Under these conditions the results of lhi_ nm(h'l hav_' lilt I,' I,, ,I,, wi! h a u acl ual

crystal growth situation. When tile growth rate is very small, an ,,::l ,, ,u,.Iv I,mK amp,role

is needed to achieve steady-state conditions in th(' melt. For v(,ry :,[,_v, pr(_wlh rales in a.

real growth system, e.g. as with ItgCdTe or In(laSh, lhe transport l,l,,',mm,'na are always

transient and the axial concentration l)rolile is id_,nlical t_) that ,)l_l;_ir,,,,l un[l,,r w,,ll luixed

conditions. For well-mixed conditions, or diffusion c(mtrolled c<)mlil i,,r_,; wh,,n the gr<)wth

rate is small, t.h('ne is vtf) radial se_,r('F_at.i,)ll [4_r all', i,,+,,tlaci;,I ,'urv,,l u,,,

Figure 5.2 shows the influence of 1)eclet number ++n tile radial v:_ri:++i,m iu composition

for a concave interface with k_ v < 1. 'Fhe resulls [,)t the (:()heave i,,+, r l;_,(, are essentially

identical to those in the previous case, except lh,, ;hapo of the ,_m,,,nlt;+qi,m profile is

inverted.

A useful feature of the discretizati{m used lmre is that it can ])e ,,;).:}]x ;_<[:,pled to any

interfacial curwll.ure. Figures 5.3 to 5.5 show l.he ra_li:_l ('_mcenlrali,m _;,r i:_th,i, fi+r ,_ c<)sin+'

shaped interface. This interface shape is solllewhal unusual in l,]t:_+ il c]l;_nffes ccmcavil.y

in the domain. Also, its first derivative wilh radial l),)_ilicm is zer() ;,l t,,_lh lhe cenl_,r and

the ampoule wall. This type of interracial curvatur,' (',mhl occur if lh,, _,_,,tl/_<)li(t inlertace

intersects tile amt)oule in the insulati+)n zone.

Figure 5.6 shows the radial concenlrati(m pr(dih' h,r an inleHa,-," ,I ..... _il,+(t t)v ti(I?) -

-0.5.I_/v + 0.5 for difl'erent wdues of N. As th+' +)r,]er of tim t),)ly_),,,t_ial |hal (l,,s,'rihes

the shat)e of the interface increases, the, interface t,(,,'<,_es flatter in lh,' , ,.nl,'r and chanKes

more steeply near the edges. This efteel is seen in lh+, _:_dial concm_It :,_h,. p_<,lih,s <,[ l"itvur<'

5.6. The same tiling is observed in l"ig_lre 5.7, whicll ::h,)ws lh,' radi:,l , ,,u,,.I)l l;_li,,n pt,dil,'

for an interface de.scribed by H(R) = 0.5 * t_ N.

Figure 5.8 shows tile effect of the equilibrium se_l,gation co,.tlici,,t_l ,m radial s,'lZrega-

lion. The further k_q changes from 1, the larger th,, s,,grega.tio_. II,,, ;,,,:,' ,,I 1.]_+,I,,,]_,_xi,,r

of the truncation error ill the tinil, o dilt;,rem,' svh,,ul,', the Sll|alh'sl _;_[,i,, ,*t /,, : lh;_l ,(,u](I

be studied was 0. l. There was no limil:_li(m on lh,, v:_lue of L',._ wh,'*, / l
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conditions l ypical ofazulene d_q,_,d n;,l_hlhal_,n,,. 'l'he Peclet numl.,,_ m,,_:t _[ten us,,_l in

the experimenlal portion of this pmi,,ct wet,, 3.2, ,_.t;, and 8.6. The ,,q.ilil. ium seg;reg_al,i_m

coetliciewll, for this sysl,em is I).3 wlw, l,he c(mc,'i_lTalion is azuh'm' i,i lb,, mell is I..lmv

5%. The lmrauleter with tlw nl_st uncerlainlv ill lhe experimenls _;_s lh,, nluH_e of Ih,.

mell/solid int_,wface, lloca,us¢, o[" thr, l,ranspare;d h<_,ler used t,_ _,.1, ,alL,',' t t_, ' vrystals, t,1.,

interface couhl he seen when the amp¢,ule was illull_inated from behil,,I ,,_ilh a bright li_.l_l

(Azulene is w'Lv dark blue.) llmh,r all t_rowth c,mdilions the interfac,, :,l,po:_rod l o be fl.'_l.

Neverthel_,ss, tim possibility exists tha_ a_l iul(,rla(:ial amplitude on lh,, (,_(I,.t ,7[ I mm c,,.hl

have escaped detect, ion. When scaled by the radius of the ampoule tbi_ _,(_,_1(t correspoml _,,

adimensi,ml-s_;,_ml)lilmleofl).12:_. A, i,leHacial;_._plitudelwic,,lt_i_; _al.,'i_ prolmbl) i:;

an upper limit f,,r the amount of c,rval ure obl;_i_,',l i_ these experim,,nt,_. '1 h,, radius _,1 lh,,

crystal was al_pr_)ximal,ely g n_m, anal a curv:_lu_,, ,,1 2 mm _)v('r thi,,: ,ti: 1:_,,, ,, w_mld su,,,l_

have been noth'_,d. Therefore, 0.25 is used as the lik_,ly maximum iul,,_ I:_,-i:_l :_mplit.d,, t,.

this pt,).i,,(:t.

Figure 5.9 shows lhe compulod radial con('enlr;_lion protile ot _,:,l,,_i:_l wh,,n lh,, ,t;

mensionl,.ss an_ldil, udo of a convex m,'ll,/_tid int,,,faco i,q 0.125. _L_ t'i<h l'''cl_'l nU_"_'''

the solutal bou_dary layer (i.e. the r_'_ion in the m_,ll where the s_d,_,, c,.w,,ulration _.:,,,L*:

from il,_ i_l(_'rfacial valm' l,o t_,'z_r il_ 1._lk m_'ll, v:_l.,') b,,g:ins I_ c_mb,_l_ ¢,, lh,, ,qh:_1..... I

the melt/solid i_lerfa,co. This causes the radial c_,_c,,_lralion prolil,' 1,, !,,w,,me tlaU('_ ,,,:,r

the ce.ter. This _.ffect is m_re clearly so_m in l:il:.ro 5.10, which :_h,,w_ lh. resulls ft.

an interfacial amt)litmle of 0.25. I_ ibis case, lb,' ra,lial concontr;_li,,_, I,,,,lib ' is m_l ,mt_

Jlar||,er f_)r |h_' hi_hesl Pec]_,l, _uml)_'_. but the c_m_.ntrati_m of az_l,,_,, m,ar Ibe co_l_,r i_

actually cl,,s,,r t,, o.< For w,_w hi!:h Ih,ch,l _u_l,,,;:_. i.,,. /', "_ ,11), lh_,_,, _,,.Id h,, .o _;_li;,t

segregation because the solulal bou_d;_ry layer would cm_form exa.cllv _,_ the, shape ot lh_,

melt/solid interface Unfortunately, thi_ model can'l, be used for smh I;_;,, _alues of I',,,1,,t

number.

l"igur,, 5.11 shows the c;dculal,,d _a,lial _"(H_(_,'lllr;lli_._lt prolih, wl,,.,, !l,,, ,limensi,,ul,,:,_:

amplitude¢_fa _'om'ave moll/s¢_lid inl,'I face is (I.I:2,_, l"i_ure 5.I2sl,i,", _h,' _:,,tialc(m,,',_
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tration prolile when tile dimensionless amt)litud,, ,_f a ((m('arve mell/>.,,li,t ittt,,rtiu:(, is 0.25.

Unlike tile results for the convex int, erfa('e, the d_'cr,'n_a, in c(m('enlt:lf i,m t_,',lr lh_, v(,nf,,r (_f

the crystal at high Peclet number is more l)ron(,unc,,d for an inl._,r(a,,,, urvature _)f smaller

amplitude.
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5.2 Convection

This section summarizes the relationship between the temperature pr_,iile ,)f tile heater and

buoyancy-driven convection in the melt. Flow visualization in naphth:_h'ne is difficult be-

cause of the unavailability of a suitable neutrally Imoyant tracer parqicl,, I"l,_w visualization

is particularly difficult in the vertically stabilized condition in which ,_mw_ctive velocities

are extremely small. In a destabilized condition, ii_ which couvecliv,' v,,bwilies are much

larger, the flow field is much easier to visualize because the viscou,: t,,rc,,s on the tracer

particles are much larger. For this reason, salol, with sulfur as a. tra,,,v, was used fl)r most

of the experiments leading to the following tigur_,s.

The heater for these experiments was made from a polycarbon:_t," _,,},,,. Its inner diam-

eter was 22.3 ram. Grooves were carved in the outer wall of the tub,, ,tsif_: a lathe. Within

the grooves were mounted nichrome wires at a, unil,,T m pitch of :_" I,,, _::/, ,n. TIw lwater

consisted of three zones: a 3.5 cm booster, a 16.2 ,'m main he:_t,,r. :,,,,1 :_:?.1_ cm he._t,,r o_,

top. The diameter of the Pyrex tube containing the salol was 155; m,_ I_,,1,_w the he.ater,

the aml)oule wa.s cooled by the surrounding air. Th,,r,uc.,ml,h,._ _,,i,, !,l_l,,,l 1o lhe,,ulor

wall of the Pyrex tube at regularly spaced axial intol vals. The st:_ r,,la_,l tl,)w visualization

technique was used (25,26).

Figure 5.13 shows the axial temperature protilo in a deslalfitiz,',l _,,_,,lil i,,n. In Ibis run,

the l)OW(,r l._ the I)ooster heater was large. This l,,'lwral_'d :_ nla×iTT,_,r_ i_, l"llll)Ol;ltlllO ill

the melt just above the melt/solid int,.rface. Th,, p,,wer to the upl),,_ /,m,, of llw [urnace

was turned down. This caused the temperature I.o drop off sharl,ty _,,':_ the t,_p ,_f the

melt. In this destabilized condition the. axial tmnp,,rature gr;_,li,'_,_ :_l,,,v,, lb,' nwlt/:.;,did

interface and near the top of melt generated conv,,clion. The c,mv,.,li,,, a_s_wiatod with

Figure 5.13 is shown in Figure 5.14. Strong convecti_,n existed lbr, m_,l_,,_l Ibo entire melt.

The convective cell near the top of the melt was gin,orated by lh,' l,'Ull_,rature n_ll-off at

the top of the heater. Strong convection existed near the interface d u,, I_, l.he maximum in

temperature caused by the booster heater.

Figure 5.15 shows the temperature profile wh,,_ lho l)m_,(,r _(, t},,. I..... :t,,r h,,,,l(,r was

decreased. The axial temperature gradient near lh,' inlorfac(, did _,,,_ I,r,,nl(d[' c[_tlvo('ti,m.
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Figure 5.14: (._,llv(,_:l.ion for _ colllt)l_,l,,ly d(,stabiliz,,d con(tili()T,. _,_'"r'_!i v*"tvo('ti()l| ,,xints

throughout fh[, ,,ntir(, molt. A ,I soc()wlql OXl)O,_llt_,xv;,,_ _ls(,d.
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The convection associated with this temperature gva(iient is shown in l"i_ure 5.16. 'l'his

figure shows that the temperature roll-off at the top of the heater t_,,,u,'rated conve('lion

which was most intense at the top of the melt :ltl(1 (h,creased _n inl,,ll_i_v :_ the illt erlace

was approached. There appeared to I)e very little c<>nvectiou ne:/r lh-iul,,tl+_(e.

Figure 5.17 shows the axial temperature protile when the power :_l_pli,'d to both the

booster hea.ter and the top zone of the healer wa_ h_rv, e. The <_)nv,',i;,,u ;,:_:,. i;,ted with

this temperature gradient is shown in Figure 5.18. The maximutt) i_ (en_l>oralure _en-

erated intense convection near the interface. The inlensity of conv,,<t i<,n decrea,_ed with

height. The stabilizing teml)erature gradient at the l()p of the melt ;_pl,,':_l,',] l<_ retard lhe

convection generated by the booster.

It is very difficult to visualize the convection in a ,_tabilized con(lili,m, gin('o no tr:_<'er

particle is completely neutrally buoyant, the)" tend to either float <,t Sil_k. V,,rv slow <'on-

vection re<luires very long time exposures in the flow visua, lizati(m I,r(,,,',lul+'. Itl tinier t<)

prevent over exl)osure of the film, a multiple exposure technique _v,l: u+,,<l. [tl this l)roce

dure the lens was left open for 3 minutes and every 30 seconds th,. t:, .... i v,;_ [l:_._h<,d h)r

approximately 5 seconds. This generated a photo of the ttow field th,_1 u,;_ three mitlules

long, but the film was actually exposed fi)r only :Ill _:,,c,,nds.

Figure 5.19 shows the axial temperature profile for a stal)ilizpd [,,r_,titi,,_,. l!ndet' those

conditions, i.Iie:_×i;_l teml)eratu|'<'_;r;_<li<'nt <lid tu,l l_r,,_,,l, ' ,,,nv<.,li<+t, ll,,v.+._,+t. <-<+_i\',,, li,m

in the melt was generated by radial tenlI)eratur(.' gt;_li,mts.

The convection associated with the,_e con(lil, it)t_._ i_ ,_hown in l:it,_l_,, !,.?1_...\ll h+)ugh th+,

sulfur tended to sink, evidence of conw,ction in the (u-It was clp:_r. '1 h,. :_I_,,:_l_: lta(:e,I by

the sulfur as it settled were very curved, indicatin_ o)_vection was 1,t<.:,,_,l i_ l lw melt. The

radial component of the convective velocity can be <,stitnated frtmt _h,, _,)t;,I ta<tial moli()n

.of the particle during the three minute period. ]"ir, ure 5.20 inttical,,.*_ _h,_l _he nmxitnutn

radial convective velocity was on the order of 20 micron/s. This i._ <)t +he _ante ()rder of

magnitude as the growth rate used in the naphthal<,tt+,/azuh, ne sysl,,t,_. :t t,_ !_ n,icr,)n/._.

l"igure 5.2l shows the axial ten|t_(,|';_ture I)rolil,' t,_t ;_ st_tl)iliz_'_l c,,tl,li_ i(_t_ ,lU_i('r lhe (+[)t_

ditions use<l to grow naphthalene crystal_, l!n<lel th,'+,' cot+<lili<m+q. +,_lt,_ I,:,rii+l+'_ 1,'_<1,',1
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Figure5.16: (;,, v(,ction caused by the, temp(,ratu,,' T(,II ()[t'nl _h,' i_'T'"I lh,, ht,al,'1. An 8

second tim_' _'xl)(,_ur(' was used.
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Figure 5.18: Corlvection caused t)y a. maximum ill I('ml)eraIur(" rl,':_t _1_,, iMl_ula(:(,. A ,1

second time oxl)t_uro wa,_ uso(t.
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Figure 5.20: Convection for a stabilizing tcltlperaturo protile. Very liltl,, (-(mvection existed

throughout tile entire melt. A 3 minute muttiph' ('Xl)()_ure was used.
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to sink almost immediately. Nev(,rth(,h'ss, the am(_rrlt of ¢:onv(',(:ti(_rl i1_ (.It(, melt was (;sti

mated using azulene as a tracer (ly(.'. (Note that oft(, nlust be cauti_rrs irJ illtcrpreting tim

results when tracer dyes are used to visualize conv(,(:tion since the ely(, its_,lf can generate

solutal convection.) To the nal)hth_lene melt was ad(l(_d a few milligr_H,_ of az_rlene. Tim

two photos in Figure 5.22 were taken l0 minutes ai)_trt. While some mixitlg w;_s apl)arent in

the ]eft side of tire melt, it is consistent with the roslrlts ot)taine(I in th,, s;_l¢)l Oxl)erim(,ylt._.

Convection in a stabilized conditiou is extremely g('r_tle.

Figure 5.23 is an interesting photo taken during solidification of prl1,, 1_:_phthalene in a

stabilizing temperature gradient. This time exl)osur(_ l_hoto shows th(, slr(,_ks caused by a

stream of bubbles that were being ejected from the me'It/solid interface d _lring solidification.

As the bubbles rose, they broke into smaller ones. The spots in the melt arc sulfur parti-

cles, which appear motionless in this t)hoto. Evoluti¢)n of gases at tile iN('lt/._olid interface'.

can contribute to mixing in tire melt. l\laralrgoni collv(_ction caus(,(I I)y th(, I)rrl)ble at th("

melt/solid interface may also influence segregation.
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Figure 5.22: Azulene is being used as a tracer-dye to visuztlize convecli,_n. The two photos

were taken 10 minutes apart.
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Figure 5.23: Streaks caused by tile evolution of g;_s bubbles from the' T_,,ll/solid interface

during solidific:_tion. The photo is a 4 sec expos,re.
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5.3 Radial Segregation - Stabilized Conditions

A stabilizedconditionisdefinedasonein whichthetemperaturenearllw inlorfacoincreased

with height.The temperatureprofileusedto growall the crystals in a stabilized condition

is given in Figure 5.21

Figure 5.24 shows the axial composition profile of azulene for a typical crystal grown

under the vertically stabilized condition shown in Figur,, 5.21 with a din,,,nsi,ml,,ss tzrowth

rate, Pe, equal to 3.2. This axial concentration profile is characteristic of that produced

by solidification from a well mixed melt. The temp¢'rature differ,'nc,, in lh,, melt near

the interface was measured and found to be approximately 0.2°C. 'l'his corresponds to a

Grashof number of approximately 10. Although tim radial tempera, tur,, _ra,lient was very

small, there was a significant amount of convection in the melt.

Radial composition data associated with Figure 5.2,1 are given in l,'i_uro 5.25. The radial

concentration profile was scaled by the mean mass fraction of azuh,,,,. This tigure gives

the radial concentration of azulene for various axial lo(:ations alon_ th,, s. ¢rl,, crystal. Axial

locations along the crystal were measure(I in terms of Ih,' mass fra(lioll _)1Ib(, ('1yslal, !1. 'l'he

radial concentration profile was very asymmetric. For mass fractions 0.'2 :_nd 0.4 the radial

concentration 1)rotile was characteristic of an asymn_(,tri(" (:(mv(,x int,q t;,,,, ¢,_ asymm(,t_i('

convection, or both. The concavity of the interface at mass fraction (1.7 i:¢_li[ticult to ju(It_('.

Figure 5.25 suggests that temperature ti('ht in l,]w m,'lt was a.symm,'_ri,. ]l,,w,,v(,r, Ilw

thermal field at the interface was measured at the outer wall of the sampl,' amp,,ule, and it

was found to be symmetric to within 0.1°C.

The amount of variation in the radial concentratior_ profile of th,' az,rl,m,, is referred to

here as the segregation. The segregation is defined as the maximum (I,,viati,m in scaled

concentration from 1. For example the segregation of lhe concentrati()n pr()fih' at g = 0.7

in Figure 5.25 is 0.45 (or equivalently 45%). Also, the asymmetry of a radial concentration

profile is quantified through an asymmetry index. 'l']w asymmetry in(l(,x is the maximum

ratio of tim scaled concentration at :t: R ( l?. _ 0) I.o th,, scaled conc(ml J;_li,,n a! -T1_- { lut _,r-

polation is used if necessitated by the spacing of tlw data.) l:rom the rali() I is sul){ra('led

so that a l)erfectly symmetric interface has an asymm_'try in(h.x _)f z,q,,. 'l'h_, asymm_,lry
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index of tile composition profile at g = 0.7 ill l"igur,' 5.25 is 1.56.

The segregation and tile asymmetry index of each run for a stabilized condition are

listed in Tables 6.1 and 6.2 in Section 6. The results for solidification under destabilized

conditions are summarized in Table 6.3 ill Section 6.

In order to investigate the effect of thermal asynlmetry on radial segregation, an asym-

metry was deliberately induced by insulatinK tile h,ft half of tile heal,,r. This in(tuced a

thermal asymmetry across the ampoule at tl,e inteffa('e of al)proximal_'ly (i.,["(/. The ra-

dial segregation induced by the above asymmetry is shown in Figure 5.26. The insulated

side of the ampoule was at I/_ = 1. For all length fractions the radial ('_,ncenlration prolile

was somewhat sinusoidal, with an increase in composition near the hot side of the am-

poule. Surprisingly, the magnitude of the radial segregation was unchanged by the thermal

asymmetry.

Figure 5.27 shows the radial concentration prolih, for a crystal that wa._ ._,di(lili('d at the

same rate as the one described in Figure 5.25. Again the radial concentration profile was

concave and asymmetric. When convection is not axi-symmetric, the cr,)ss sectional com-

position is not accurately revealed by composition measurements along ,)nly one diameter.

In order to more accurately characterize the cross sectional varia,ti_)u i_m the ('oncentratiof

profile, the concentration of azulene in the crystal described in Figure _i.27 was measured

along two diam(,ters at 9 = 0.5. The re._ull,s are sh,,wn in Figure 5.:>,_. 'I h,' azulen," c,_u

centration was measured along one diameter at 5 p(,ints and then at 2 points along a line

perpendicular to the first 5. The concentration was scaled by the meatl <>f the seven values.

Figure 5.28 indicates that although a radial concentration profile may b,, very symmetric in

one direction, this does not guarantee that the radial composition l)r<>lile will be symmetric

in another direction. The curve consisting of five points shows a sinus(>i,l:_l v_riation tyl)ica]

of that showed in Figure 5.26, the strongly asymmetric thermal profile.

When composition was measured along two diameters, the sanle ('onventi()n was always

used to describe radial position. The concentration measurements go fr()m ]elt to right and

back to front (faciug the crystal as grown) alon[4 lhe two l)erpel,di(:l,l_lr _li,_lN_,ters. I"or the

curve descril)cd I)y live points, I_ = 1 refers to the right side of the crv_lal, lg)r the cllrve
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described I)y three points, R = 1 refers to the front _)l the crystal.

Figure 5.29 shows the radial coml)osition profile for a crystal grmvn at a hi_h('r growth

rate of 5.23 mm/hr Pe = 5.6. (Note that in these experiments the Peeler number equals the

growth rate in mm/hr times 1.0726 hr/mm.) The radial concentration pr,)file of azulene was

concave and appeared to be more symmetrical than the previous cases. Tim measurements

were taken at a, crystal mass fraction of 9 = 0.6.

Figure 5.30 shows the results for another crysta, I that was grown :_l a rat(' that corre-

sponded to Pe = 5.6. The radial concentration prolilo was measured ahm_ two perpondicular

diameters at approximately the same mass fraction as the crystal (l('s(ri h(,(I in l"igure 5.29.

Along both diameters the segregation and asymmetry of the concentration profile were

much greater for this crystal than for that in Figure 5.29, even though bolh crystals were

grown Ull(ler the same conditions.

An attempt was made to improve the radial homogeneity of the (:rystal I)y sl()wly rotating

the ampoule at 2/3 rpm. The results are shown in Figure 5.31. The radial homogeneity

did not improve. In fact, it became slightly worse. I¢oth the radial _,,t_r4'_,ati()n aml the

asymmetry of the concentration profile increased.

Figures 5.32 and 5.33 show tit(' results for a ('ryslal thai was gr_)wn :_1 a Izl l,. (_)vt-eSl_(md-

ing to Pe = 7.4. The figures each show two perpendicular radial ('(m(,,lllrnti_m t)r_)liles in

the same crystal but at dill'erent axial hwati,ms. I"il'u,e 5.;12 sh_,w:; l l_,, T,':,ull: ;if Ill(' ;_xial

location that corresponded to g = 0.2. Along both diameters the cot_:enlrdli,m profil(' was

convex. Unlike the crystals described above, the two perpendicular pr,,til,,s w,,ro similar lit

shape. The segregation and the asymmetry were greater alo_g tb_, diam_,l_,r described I)y

five points.

The same results were obtained when the radial concentration l)T,,lil_ , was m_,asured

farther down the crystal at g = 0.5, Figure 5.33. The shapes of lll,. (:urves in Vigures

5.aa and 5.32 are very similar. The curves that consist of thre.e points ar_' concave and

symmetric, while the curves that consist of five points are concave aml mot," asymmetric.

The segregation results along the length of this ('rvsl, a} t)row,d I,_ h(, l,,l_1,,,lucild(,. 'l'he

same results were obtained again when a crystal was grown under lh,' same c(mditi,ms,
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Pe = 7.4. These results are shown in Figure 5.34. The concentration pr_,tiles were measured

along two diameters at 9 = 0.5. Tile segregation wa_ the same along 1)(_lh diameters, but tile

curve consisting of three points was more asymmetric. The segregation and the asymmetry

for this crystal were nearly the same as that obtained in t.he lirevi<)vv_ly do,_crib(,d case.

Figure 5.35 shows radial concentration profiles fi)r a crystal grown at 7.96 mm/hr (Pc =

8.6). The profiles are given for two different axial locations along the s:_mo crystal. In both

cases the concentration profiles were convex and fairly symmetric.

Figures 5.36 and 5.37 show the radial concentration profiles for a crystal grc)wn under the

same conditions as that described in Figure 5.35. Shown in Figure 5.;_(; i,_ the concentration

profile measured along two perpendicular diameters at g = 0.2. Both c_vrves have the same

shape and are very symmetric. Figure 5.37 shows the radial concentr:_lion protiles farther

down the same crystal at 9 = 0.5. The radial concentration protih: lor this case was very

symmetric in one direction, but skewed in the other. In this way this result, is similar to

that shown in Figures 5.32 and 5.33 for Pe = 7.4.
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5.4 Radial Segregation - Destabilized Conditions

Figures 5.38 to 5.40 show three axial temperature l)rotiles that are char;wteristic of a desta-

bilized condition. The maximum in temperature near the interface wa,,; controlled t)y tile

power supplied to tile booster heater. When the i)ow_,r t() tile I)o_)_l,,r xv_l,_ incre_s(,d, the

maximum in temperature above the melt became greater and broader. In all cases the

axial teml)erature profiles for a destabilized con(litio, had nearly th,, s:ll_l(' shape. F'or this

reason, only Figures 5.38 to 5.40 are given as representative teml)erature l)rotiles.

The characteristic temperature difference used to calculate the (;r;_shof number was

the maximum temperature in the melt minus the temi)erature at the top of the melt. In

order to provide maximize reproducibility in the determination of the Grashof number, the

characteristic temperature difference was always measured when the top of the melt was

10.5 cm above the center of the insulation zone. This corresponded to the point during

solidification when the mass fraction of the material solidified was 0.2.

The radial concentration profile for a destabilized condition associat,,(t with Gr = 556(10

and Pe = 3.2 is shown in Figure 5.41. The radial homogeneity for this ('lyslal w_s very good,

the segregation was only 5%. The radial concentration profile was also wry symmetric.

F'igur(, 5.,'12 .ghows the ra(li:ll co,c(,lltra.ti()ll l_T(dil,,s fl,[-,_ ru_l wh,,, th(, i_w,,r t_) _h(,

booster heater was increased to yield Gr = 88500. l"igure 5.42 sh()ws two 1)Orl)endi(-Nl:_r

concentration i)r()filcs that were measured at ,_ m,L_s fraction ()f 0.?. _l'l,is w;_s the, (,l_lv

crystal in which a discontinuity in radial composition was observed. Six points had nearly

the same azulene concentration, but tile concentrati(m in the cenlor _)f the crystal was

larger by Ikea,rly an order of magnitude. I'erhal)s the ;Irl()rn;tl(ms r_,s.ll,_ w,,r,, c;lus(,d I)y the

constriction in the ampoule used to promote single grz_in selection.

The mass fraction g = 0.2 corresponded to the t)oint during growth when the melt/solid

-interface emerged from the constriction and entered tlw mai. b()<ly of lh,, :ln)l)().lo. I'('rh:_l)S

the transient growth conditions at this point in the growth process (';_tlsed the interface to

be fiat near the wall l)ut very concave near the tempter. /_1aybe the s(,g,r_'_;_f i,m w,_s ass,)ci,_ t,o(I

with a gr;tin boundary, although He b(mn(lary wa.s vi,_ibl(, _l that l_)i_l. I_ ;_t_3, case, a_

order of mag, it,(te jump in concentration l)etween t w() points was _wv,,_ (d_orvo(t i_ ;_Dy
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other crystal.

Figure 5.43 shows the radial concentration profile when this crvsla] was analyzed at

g = 0.5. In this case little segregation was observed (4%) and the c(mcentration profile

was very symmetric. These results are similar t.o th,,so shmvn in l;'i_ur,' 5.,11 (i.e. growth

condition Gr = 55600, Pe = 3.2, concentration m,,asured at 9 = II..q; 5% segregation

observed).

Figure 5.44 shows the radial concentration protile at the same gr,,wtll rate, I'_' = 3.2,

and a higher Grashof number, Gr = 116000. Littl,. segregation was ,bs,.rw,d, 4%. The

results shown in Figures 5.41, 5.42, and 5.+1 iH(licat(, that convccti(m i,, the destabilizt,d

condition (with Pe = 3.2) was sufficient to cause the crystals to h;_v(, very little radial

segregation. In fact the amount of segregation might even be called negligibl(, since it was

of the same order of magnitude as the error in the technique used to anz_lyze (he crystals.

Figure 5.45 shows the radial concentration profile in a destabilized ('omlition with Gr =

39600, at a growth rate associated with a Peclet number of 5.6. Significant segregation

was measured in this crysta.l (l 7%). The ('om'entrzLli,,, pr()fih, was ,l:_,, ;L:',ylllln('tric. l,,'ss

radial segregation was observed in another crystal grown at the same ralo bul with a higher

Grashof number, Figure 5.46. The radial concm_Iri_thm prollh, was p_l,'z,sll/,'d al,mg tw()

perpendicular diameters at a mass fraction soliditi_,d ft -- 0.5. Th,, s}t:,l_(' ,d the t)r()liles

were similar to (.hat observed in several stabiliz_,d (;_,,s. i.('. sk_,w,',l _dnl>,)idally al-ng_

one diameter and convex along the other. The protil_,s w(,r_, a/s_ conv_ ×. II_,wever, in th(,

destabilized case shown in Figure 5.46 the radial segr,'gati()n was much I,,ss, 7%.

Figures 5.47 and 5.48 show the radial conceld, rali()n profiles for a (rvslal lhal was grown

with a dimensionless rate Pe = 7.4. Concentration protiles were obtained along two per-

pendicular diameters at two ditDrent axial locations ill the crystal. /"igure .3.,17 shows the

results for Gr = 76200, Pe = 7.4, as measured at .q = (I.2. For this crystal, lhe concentra-

tion prolile was symmetric although the segregation Wars l:_rge (45% in ,)m' (lirection and

25% in the other). Figure 5.48 shows the radial com'(,ntration l)r.til, ' mozlsurod farther

down the cryst;d at g = 0.5. At this ](_(ati_)l! l/m ra,li/ll segr('_,ol.i_m WzlS r,',luced Iml. the

asymmetry had increased. ]Pour concentration protil_.s were in(,asur(,_l f(,r this ('rvstal. A
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121000 and Pc = 5.6.
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Figure 5.47: Radial concentration profile for a (l('_tal)ilizc(t condition at .q --- 0.2 _ssociated

with Gr = 76200, Pe = 7.4. The composition wa-s mcasurcd along tw{} l}erl}endicular

diameters.
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Figure 5.48: Radial concentration profile at g = 0.5 for a destabilized (:,mdition a._sociated

with Gr = 76200, Pe = 7.4. The composition was measured along two perpendicular

diameters. The results are for tile same crystal ms shown in Figure 5.,17.
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mean segregation of 28% was observed. Figure 5.,19 shows that wherl the Grashof number

was increased to 138000 for this growth rate tile mean segregation was ro(tu(:ed to 13%.

Figures 5.50 to 5.53 show ttle results for a dimensi()uless growth rate of _.6 with various

Grashof numbers. In Figure 5.50 tim results are sh()wn fi)r (Tr : 76711(I. 'l'ho concentration

profile was very asymmetric and the segregzttion w_s 21%.

Figures 5.51 and 5.52 show the concentration Im)tih's for a Crysl._l _r_)wn with Gr -:-

109000 and Pe : 8.6. Figure 5.51 shows that the segregation was larger than that in the

previous case, which was grown with a lower Grash¢)f numher. The s(,_re_ai.iml was l_rge

(47%), as was the asymmetry. Figure 5.52 shows the composition protile me;_uured in the

same crystal at g = 0.5. Again a large segregation of 50% was measured, although the

profiles were more symmetrical. When the Grashof lmmber was increased to 15800{) a

reduction in segregation was observed (to 15%). As sh(_wn iu Figure 5.53, the scgregalion

was less than the previous case but the protile was very asymmetric.
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Figure 5.49: Radial concentration profile for a destabilized condition :tt .q = 0.5 ,associated

with Gr = 138000, Pe = 7.4. The composition was measured along two perpendicular

diameters.
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-Figure 5.50: Radial concentration profile for a destabilize<t con<litio. ;tt 9 =: 0.5 ,a-_sociated

with G'r = 76700, Pe = 8.6. The composition was measured along two perpendicular

diameters.
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Figure 5.51: Radial concentration profile for a destabilized condition at g --- 0.2 mssociat(.'(l

with Gr = 109000, Pe = 8.6.
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Figure 5.52: IL_dial concentration profile for a destal)ilized condition at 9 :-: 0.5 a.ssociated

with Gr = 109000, Pe = 8.6. "File conq)osition was measured along two l)erpendicuhtr

diameters. The results are for tile same crystal as shown in Figure 5.51.
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6 Discussion and Com:limions

6.1 Stabilized Conditions

Tile results for solidification under stabilized con,lili,,ns are sumul:_ri.:,',l i, 'l;_l,l,',_ 6. I aml

6.2. Table 6.1 lists tile results for l'c = 3.2 an_l /',' --: 5.6. 'l'al,l,, t;.',' lisls th,, iosults fl_r

Pe = 7.4 and Pe = 8.6. The fi_llowing examlfl(, sh,,ws hmv to 1,,;,d lh,, l,,bb,s: (:rvslal

number 53 was grown with 1'c = a.2. (ll, stabiliz,',l condilions t l,,, {:r:,sh,,t Tluml.,i wa..;

always approximately equal to 10). The radial comp,,sition profile wa:_ moasur,d ,_1:1 :- 0.2

and 9 = 0.5. The segregation was l:g% aml the assmmetry imh'x _v;_,.__1.1:{. :\l :1 : (}..", lw_

values are given for the segregation and the asymm,qry index becz_U_,, lw,_ p,,rpendic,_lar

radial concentration profiles were measured. For Ibis and all othor eJpl ri,,_, llw tirsl liu,, lisls

the results for the profile constructed using live [),_irll>;. 'l'he s,,c,)lld lin,' ]iyqls lh(' r_,sl]ll_ t}_I

the prolih, that consisted of three t)oinls.

Figure 6.1 summarizes graphically the results for stabilized conditi,ms. II is a pl,,1 of

all the measured segregation values vors;us dim,,l_si,mh,ss I:I,,wlh r,_l,,. (['h,, run._ wl,,.r,, a

deliberate asymmetry was created and the ruu wlwro tim ampoul,, _va: r_,lal,,d w,,T,, it,ll.

included.) Tho error bars in th(' I_lot. aro l.h,, slan,]:,rd d,,vi;_i,m ,ff Ih,, .,.!,I,.,,::,li,,l_ :it ,':_('b

Peclet number. A second order polynomial was [itl_,(I t,) thal dnl;_. 'lb,' _1;1I;i s,_j2,K,'sl l[Inl

there might a maximum in seKregali_m at l'c 7. I. ('llw c_,r_,,l:,li,,r, , .... Ili_i,ml 1,_ lhirq

figure is very poor, 0.29. If a third order polymm_i;_l is usod _o ]il Ihe d:,l:_, lh,, ,_ r_,{:_I i_il

coefficient is only marginally improved, 0.35; but t]wro is slill a mz_',:i_,_ln at 1'," = 7.1.)

In stabilized conditions, the buoyancy-driven c_mvoclive velocity i_ ,,1 I1_,, s,_ m_, ,w,l,,r of

magnitude as tile growth rate, _ l()tt_/s. (;(mv,,cli(m Ibis W, nl]o ([,),.. _,,,t I,m_(,rTmi;:,. lh,,

melt effectively. During crystallizati(m, solute is r_,.i,,(l(,d fl,_ln l lw _,,1_/s(,lh] il,l,,rlac,, nn(I

a solutal boundary layer of ¢5s thickness is formod ah,,:_d of the inl,q'[;_c,,. ( g_,_{ 1,, (',)nv,,,li,m

near the interface doesn't honmgenize the lnell,, but ,qX.t.r''l'l}.qlilt' ,_'.i,'cl,',l :;,,I,iI,, al,,llg c,_usill_

its concentration to vary along tile melt/solid it_t-rfaco.



Peclet#

3.2

5.6

Summarizedl(csults Stal,iliT,,'(l(k)rl(liti(),:¢

Crystal

30

32 t

Mass Fraction

(I.'2

(). I

0.7

0.2

O.6

Sogr(,,_ali()n Asymrn,,lry llldex

{I.'. (I _ I

O. 9 0.3 1

(I..I 1.5(;

().,1 O.X t

O.1I ().17

0.7

53 0.2 O. I

0.5 O.:l

35

54

37*

0.6

0.5

0.3

(I.(;

ILl

0.?

(I.I

0.6

ILl

(_.T:{

(I.._,t)

(Il!_

I) II!_

()'i !

()._I;

I.I

() !:(;

Table 6.1: Summarized results fl)r st;_l)ilized con(iii.i(,t_, 3.2 < I'_ _: :,._;. 'l'l,(, l,:_ldo lis;l_

the growth conditions for each run, the resulting s('Kr,Kation ;_Nd lh,, ;_vm,,'try ir_d,,× _I

the axial location in the crystal at which they wore m(,asur(,d. (l_,,l,r 1_, t(,×( tor f,_lh,,

information.)

IA tcn]l)cratur_: diffcrcnce of 6.4 "C was iml,,,_.d a(to.'_ fit,. ,,.(_i,le (,I ih,' altllX,lrl," tl,',_, Ih," m,'ll/,.,li,l

interface.

tThe antl_ouh: was rotated at 2/,] rpm.
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n ° • 1 ° •
._, Summarized Results - Stal,)l]×,,d (,on(htlon_

Peclet # Crystal Mass Fraction S,'_r,'e_lli()n Asymm,,iTy In(h'x

7."1

8.6

5O

55

34

49

0.2

0.5

0.5

0.,1

0.6

0.2

0..5

0.1/;

0.?9

l!/_,

0.15

().,15

I).?l

0.29

().ZR

().(;7

(). 5 1

().II

() .'?l)

0.17

(} ; 1

()..1.5

().? l

()._)')

_).()6

() 2!0

1.3

I). I:_

Table 6.2: Summarized results fl)r stalfilizcd c(m(liti,,N._, 7.,1 ,< I'c ...x(;. 'l'h_, laid,, li_;t_

the growth conditions for a run, tile resulting s_,gl_,l_:_ii,,n, and the a,:vT_,w_l,,lrv iml(,x a l Ih,,

axial location in the crystal at which th,'yxv_,re nl_'a_ll,,d.

In the absence of convection, and density differcn<'<_s l>etween tlw s,did and the, melt, th¢'

dependence of the axial composition proIile in tho m,,I[ ¢,n growth ral,' i_ ¢l,,nt(mslralt',l hv

the following e<luation , which describes ono-dim(,nsi¢)nal stoady-stai,, diflusicm in lh,' m_,lt,

(40).

C 1 - k,.q zv
--= 1 + _'xl' -7= (d.l)
Co k_q

For these conditions, the solutal boundary layer is d,,tino, l:

(; 1- Ic,,_ ___t2
-- 1 + --_'xp _' (ti.'2)

Co k_ 1

= 1.01

1.15
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Rearrangement gives an expression for 5s:

= - 1"-7In - -- l_,,q

As the growth rate is increased _s is decreased. Alth(mgh the above ('o.ditions may seldom

be met in practice, Equation 6.3 was derived to introduce the concept ol +a sol,l,a,l boundary

layer. When there is convection in the melt, the thickness of thor s+duta] boundary layer

is reduced, and 6s refers to tim region where tlu, s_,lule (onc(,ntralit,n in the melt (;hanges

from its interracial value to near its bulk-melt vahle.

As the growth rate is increased ah()ve l'c = 7.4, radial segregati<m might I)_, ('xt)ected l()

decrease for the stabilized condition. At high rates of g;rowth as << (5v so convection doesn't

significantly disturb the concentration field in the malt, i. e. mass transfer in the melt is

diffusion controlled even though there is conv+,(:ti(m in the melt. 'l'llis ,'xpla.ins why there

is a maximum in Figure 6.1. At high growth rate_ lh,, elfeets of cotlv,'cli(m and itlteT'f._('ia[

curvature on radial segregation are decoupled, an(t only interracial curvature is expected to

influence radial segregation.

The etfect of growth rate on the experimental axigt] (;ottcentrati(m pr(,lile of aztd(,n(; is

shown in Figure 6.2, which is a plot of C(.,'1)/(7,, w,rsus fl fi)r thr+',, dilf,,r,ml _:rowth r:)t+,s.

(The data for this plot are at the end of Appendix k.) As the growth rate was increased,

the shape of the axial azulene concentration protile chang('d from l.]lal ass++('in.l ed with well.-

mixed to that associated with ditfusion controlled ('(mditions. The itllportant feature of

Figure 6.2 is the shape of the curves, not exact valu,,s ,)f the data, siu(',+ lh,, data. for this

figure must be incorrect.

Recall the normal freeze expression:

Co -- key.f(1 --g) l'''ll-1 (_';.,l)

If experimental data are availal)le, l,',.jj. {'all lit, del_,rnlined by pl_ltiu!: In_, _:,, l

In(1 - g). For well-mixed conditions, k_jl = k_q; for steady-state dilfusi+m ('ontrolle¢l con.

ditions k,+jj = 1. For any other condition, k,.q -/ I,', rl < I. In l"il';ut,' G.'? f¢)r I'+' : :_.'2,

keII was found to be 0.24. In Figure 6.2 for Pe = S.(;, lhe axial comp¢>sili<m pr¢dile vi¢)lat,,s

conservation of mass. These results are theor+,licallv imp¢)ssibl,', (h," ,,rr+,r win; pr<)h;_hly

1,17
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caused by improper calibration of tile gas chromatograph that was used to analyze the

crystals. As discussed in Section 4, improper calibration was unavoidable and that was why

all radial concentration data in this thesis were scaled by the mean value as measured at

a given axial position. Figure 6.2 indicates the the absolute error ill the measurement of

azulene concentration could be significant, on the order of 20%. Nevertheless, the trend

shown in Figure 6.2 is accurate. Figure 6.2 suggests that as tile growth rate was increased,

k,y.t increased from approximately kcq to at)proximately and mass transfer in the melt at

the interface became diffusion controlled.
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6.2 Destabilized Conditions

The resultsfor all tile runswith destabilizedconditi-I_sare summariz,,,I in 'l':_ble 6.3. This

table lists tile growth conditions associated with each run, the m,,a,_:ul,,,I ,,;e_regation, a.nd

the asymmetry index.

Figure 6.3 shows the effects of l'eclct number aml (;rashof number ,m segregation. This

plot was constructed using the minimum segre_ati,m _d_served el. ,,a,h I¥ and ('r. 'l'he

minimum was used rather than an average value b_,c:,use not all ru,s were replicated the

same number of times, and it was felt that an a vcr;_," value w(ml,l ._k_,w the, resulls in

favor of the runs which were replicated. (The results for l'e = 8.6 and ¢;r = 109000 were

not plotted because the radial segregation for that condition was so laTl,4_ it obscured the

relative variation in the segregation for the other condilions, i. e. the phil didn't look good.)

There is waviness in theplot because a small numb¢,r of points can'! ad¢'quately delin¢: a

surface, particularly when there is scatter in the _'xl-'_im(mta.l data. I[_ _,_,n,,ral, there was

little segregation at very low growth rates, but s<,gre_,ali<m was small_,_l wh,,n the P(,('h,t

number wa,s small and the Grashof nund)er was lal_,,,,, l"_r larg;_, g;r,,wl h rates, segr(,g;ali.n

could be decreased by increasing the Grashof number.

lh)r a destabilized condition, Im_)yan('y driv,,n ,,,I.v,',li,m itt th,, r_,,ll i_; it_l,.N_a, :sml

the solute distribution in the melt tends to be very h(mlog_,neous. As 1]1o gr,)wth t'alo is

increased, the solutal boundary layer l_,<omes small_,r, l}l<,r_.by red iici nl,_ lh,, t,llt't t iven¢'r;:< td

convection in promoting radial holnog<meity in the c'rvsta].

No axial concentration profiles of azulene were obtained for d¢,sla hili/,,,l (r_l_lil itms since

it was assumed I,ha.t the co,,liti,ns w,,re _haracl.,,_isli, ,d a w,,ll _l_i×,,_l _,,,I_ 'l'l,b; ;,_;.';Uml,li,m

can be checked using the normal freeze ,'qual.i_m. Igor wr,ll, mix,,d c,m,liti, m,::

-- k,_,/( 1 -- .q)k,.q-I ((;..q)
(7o

(_;o .q=O.,_

With the exc('pti()n of crystals 51 and ,1,_ all (ryslal_ I':r,)wn uml(,r (I,,_:l:,l,ili_,,,,I ((m(lili,,_

had a concentration of azulene, as (h,s(:ribed 11y I';<lU:,lion (1.5 at ._1 1_.5,, I_,,1w(,_,n ().F_[)

and 0.63. Considering the error associal,,d _vilh lh,, _,'a.'vurerl_enl 1,_,.,',lur,'. *]l,'_;,' r,':;,_lls

15(I
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Summarized I{csults l)eslal)iliz(,I (,on(lit'o ,

] l)eclet #

3.2

] (_rysta, I

,11

42

Grashof #

55600

88500

Ma.qs l"ra(q i_),

0.5

0.2

0.5

_q,'r_reg;aI i, m

O.05

(|. 9 ;I

0.!)3

().0,1

A,:xmm,'lrv Imlex

(I.[)5

ILO'2

0.(14 [).[):g

43 116000 0.5 0.04 0.(14

5.6 44 39600 0.5 0.17 ().;g6

121000

76200

138000

45

51

52

0.5

0.2

0.5

0.5

0.2

47

7.4

8.6

(l.07

0.07

0.45

0.?5

0.1,1

0.')l;

0.13

O. I?

I).21

0.4748

76700

109000

().0,_

[I .(|7

0.13

0.77

().IS

II 6%

i).1:{

11.(17

(_. ll;

1.'2

,t[i

[).5

158O0O 0.5

0.51)

0.51)

0.15

(!.6I

().:15

Table 6.3: Summarized results fi)r soliditi('aticm .ml,,i d,,._lal41iz,',l ,,,.,lili,ms. 'lh,' l;,I,l,.

lists the growth conditions associated with e;_ch ru .. lh- se_r('f4a! i(m :_tl,t :,_ nl m,'l I.v ind,,x,'_

;uM the axial I_wali()n in th(, crystal wh,.re they w,,v,' wv..:,:_.l-_l. (1¢,.t,._ I,, t,.xt I,,v I,Jrlh,,f

information.)
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SEGREGATZON VS. t_[: AND Gf_

Figure 6.3: Influence of Pc and (77" on radial se_i<'<_s;;tlionfi_r desl;_l,iliz_,<l r<ln_lilitms.
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indicate that tile melt was well-mixed for destahiliz,,d conditions. {If th,, exp,,rinmnt;_l error

were ignored and 0.55 is chosen as a nominal _,-tlu(, for C(0.5)/(7o, I,',quation 6.5 pr_,dicts

keq -- 0.35. This agrees fairly well with the valu,, l,'_q = 0.3 giv,'n I,y Karl(3(i). As fi)r

crystals 51 an(I 48, the values of _c:i. ai..q = 0.5 win,, 0._5 and 1.0 r,'_l,,'ctivoly. Those, two)

_berrations slay have caused by constitutional supvJc,,_,lin_.

Figure 6.4 is a plot of the minimum asymmetry index vs. Pocl,.t _luml,(,r and (',1:_hof

number for desta, bilized conditions. Note the sinzilalilies betwe(uJ Ibi,_ li_{,_' and ]"igor1,' 6.3

( Radial segregation vs. Pe and Gr). As with radial segregation, asymm,,try was gr,'alest

when Pe was large and Gr was small. As Pc wa_ decreased ar,I a,_ (;r was i,(:r(,a_(,(I,

asymmetry was reduced. The similarities between l"iflures 6.3 and 6..I su_,,sls that _a,lial

segregation and the asymmetry of the radial composition profile are ro[atod. This is furth,,r

demonstrated by Figure 6.5. Figure 6.5 is a plot ()f the minimum n%,mmetty _d)s,,rved

for a given growth condition versus the minimum ',;,.!,_rq'_:_ti(m (,l_,_,,i v,,,I I(u Ih,, _::_itl,, _,,I ,,l

conditions. The data in Figure 6.4 are fit fairly w,,ll by a straighl lin,' (th,, SClUa.r(, ,,f lhe

correlaA, ion c(wlli('ient, r 2, equa.ls [).,'q2) with a sl,q,, ,'qu:_l t,) '2..1.

'.['able 6.4 gives a comparison of the radial segr,,_ation measured t,_r tho trW_) lyp''S of

thermal comliti,ms. In all but t)m, ,a,_(,, I},, v:_lu,,:_ f,,_ I1,, ','t',r,'t',a_i,., :,ml th,, r:_m..,, ,,f

segregation were smaller for destabilized conditions. (The one e×c,,p_i,m was 1',' ---- :L2 in

a destabilized co_dition. Recall that this was the ,)_15" case where a di,c_m_i,uily in _:,lk_l

concentration was observed. If this cas(; is ign()r,,d, Ih_, ra.ge ass()(iaI,.,l with 1'_ :: :l.'- tbr

this destabilized condition would be minimal, 0.().1 0.05.)

Large variations in the amount ()f se_re_a.ti-u a_.I asymru,,try iml,,,: i(_ :_ t_ivm_ _,_r,_wlh

condition were often observed. For instance, fl,r a dostai)ilized (',,ndili,,n wiih l'c ::- 7..t

(crystal number 51), composition proliles were m('asur(,d at two (litl_,rm_l axial huali()ns

for a total of four diameters. The segregation ran$1(,d from 1,1% t(, ,1.5%. ']'he asymmetry

index ranged from 0.13 to 0.68. Ilmler slabiliz,,,] c_mdili.,.% ex,.. lar_V'r variali,m_: in

radial segregation and the asymmetry index were ol,s_.rved. A plot ,>f the asymmetry inde×

versus I'ecl(,t hi,tuber h)r st;tbiliz,,d c,,_.liti_ms ha:_ _l,_I l.,,,_ [_re*.;_..l,,,I b,,_,' I.,,;_m.. il _r, ml,I

resemble a scatter diagram. The getmral tret_d b,,r,, was that tbo }a_,.,,t Ib,. s,,_t_,Kali,_l f,_r
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ASYMMETRY ]INDEX VS. OR Alql_ I:>f

Figure 6.,'1: Influence of l'c and (:7" on asymm,,lry f,_r d¢,sl_hiliz,,,t _,,,,liti_ms.
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MINIMUM ASYMMI,:'I'I{Y VS. MINIMtJM SI,:_.;I(I,:_;A'I'I()N
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Figure 6.5: Mininlunl asymmetry index vs. mi.imum segregali_m ,,I,_:_il,,,ll l,_I a ,l_iv,'ll l'r

and Gr for destabilized conditions.
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a given growth condition, the larger tile variatiot_ in the re,_ults.

The scatter ill the results isn't surprising. If a crystal was _l()Wll Illl_[(.r (:(,iditi()tls

that radial precluded segregation (low growth ra.l.0 :lll(t intense c_.lvocli,_l_ in the molt.),

tile crystals would a.lways I)e radially h(.llO_;,.tl(.(,,,_ :t,,,I c,,t,._oqtt,.,itly lho :l.g3'llllllol.r 3' ilt_l,'x

would have to be small. If a crystal was grown at a biI_b growth r;tt(. ;_l_t wilb litl.lo mixiJ_g

in the melt, nothing would theoretically fi_rbid tho cry_l:_l froth t_(.in_ t;i,li;_llx' h,uN_,_...n.,,u_.

Any number of growth parameters could combine to itwroase or docr_,;t..o i_1i:_1 _og_ro_,_lli_m.

This is reflected in the scatter of the results when segregation is lar_,'.

1,56



6.3 Diffusion Controlled Conditions

Onereasonfor usingthe numericalmodeldescribedin Section3 wast()cah:ula.tetile effect

of interfacialcurvatureon radial segregation.Tal)h,6.5 lists the resull._;(if Ill(, mo(Iol ti)r

the caseof a.ninterfacewith a (limensi(,nh,ssaml)lilu.le(if 0.25and t,',,_ - O.:l, 1)aramel.(,rs

typical of the experiments. A comparison of Tables 6.5 and 6.,1 shows that for destabilized

conditions, the convection in the melt r(,(l uc(,d the s('gr('gati()n that w(,uhl haw, l)(,(,n causo(l

by interracial curvature. For stabilized conditions, (.h(, observed radial s(,_,_)(,ga(,ion was oven

larger than the segregation predicted I)3"interracial c,rw(.urealone. F()r (hisc(mdili())) (ho

convection in the melt amplified the effect of tile int,Ma(-ial curvatur(, in or(rating cryst,_Is

with poor radial homogeneity.

Results from the numerical model are further summarized in F'igur,'s 6.6 to 6.,q. 'l'he._,,

figures demonstrate the effects of Peclet number, intorfacial amplilud,,, and se:<regaIi,m

coefticient on radial segregation for dil[usion controll,,d conditions. I.'i!,.,ire (;.6 is a l)h)t

of segregation versus Peclet number and equilibrium constant. For l,'.q = 1 lhere is 1)_)

segregation. As k,,q is decrea.sed s(,grcgal.i(m l)(,(()))],,.,_ _,.i,,al,,r, a/th()u_,h (hi:; ('If,,,( i.'; _,t(';,!_,l

for larger values of the Peclet number.

Figure 6.7 is a plot of radial segreg;t(i()n vs. int(q I:wi:_l aml)lilu(l(, aml I','<h,l nunlb(,i. IIv

convention the amplitude is negative for a convex ))l(,l(/_oli(t i),terfa('(,. "Wh(m (.h,, aml)lil)),l_,

of tlte interface is zero (no (:urval.ur(,), (h(,re is )i,) ,','r,t('p:at.i()n. As l]),, lll;_.,)lilu(l(, ()1 fh,.

amplitude is increased the segregation is increased. Segrogation is al_;_vs l,'l('aler ti)r a

convex interface than for a concave interfac(, of (ho s:lln,, amplitud(,. 'l'he ditt(,r(,nc,, in

segregation becomes greater as the l','(:l(q, numl)<,r is i))creased.

Figure 6.R is a plot of segregation and equilibrium <,),sl:)nt versus in((')laci:)l ,)ml)lil,t,l,'.

Not surprisingly, there is no segregation for a Ila( interface or wh(m l,',.q = I. Again,

segregation is a]wa.ys greater for a convex interfac(, (ban for a c()ncav(, i))((,rfzlc(, (if (.ho sam,,

amplitude. This difference in segregation becomes gr('.ll(,r as l,¥q is (l('(:r,,as,,d.

In summary, h)w crystal growth rat(,s h(,l I) I,o (')(,;)(,, ('rysl.:_ls (hnl :)),, ):)(li;)lly h()m,)_,,,

neous regardless of thermal condition. Elliciont mixi))_ of the )nell, s))(h as (hat [)),,s,,))l

in a destabilized condition, also reduc(,s radial sogr,'r:alion and ca)) ov,,n ,'li)))i))a(,, i(wl)(,))
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II Condition

Sl, a bilized condition

Destabilized condition

l'c = :1.2

•II ..'l,q

.0,1 .93

.............r IIl'c = 7.4 I', = ,_.t;

Table 6.4: Observed range of radial segregation as a Iunction of l'(;cl_,| ,,mhor. (The cases

where the ampoule was rotated and a thernml asymn_etry was crealed were not included.)

II Interracial shape Pc = 3.2 l'c - 5._; Pc == 7.1

II(R) = 0.25R 2 .22 .27 .29 .3(1

11(17,) = -0.25(R '2- 1) .24 .:lg .,15 .19

'fable 6.5: Calculated radial segregation as a functi_,n of interfacia, I sh;_l,,' an.I l'oclot n,nl

ber with k,q = 0.3 for dill'usion controlled conditions. I'h, radial s(,gr,_li_,. _v_s calc,la l(,d

using the model described in Section 3. The pa.raHir,tors used were lypical of tho azvt

lene/naphthalelm system.
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. (-,SEGREGATION VS. PECLE I _ AND EQtJ.II .... (.ON,-,I .

Figure 6.6: Segregation vs. Peclet numb_,r and _quilil,rillm ccm._tant for ditl'usio,i c_mtrc,11,.d

conditions with II(R) = 0.25R 2.
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"-- SEGREGAI-ION VS. E(;_IJII_. (:()lqSI. ANI) APIHI_I ItJl)t-

6.,£. SeKreg;_tion vs. inl.erfari;_1 aU]lqilu_l, ;lud _'q,ilil,rium r,m,'_laul I,_r dillu:;i,,DFigure ' '"

controlled conditions with Pc = 5.6. A]though it may not be c]oar trom tho tigure, lhe

rang:e in int.erfz_cial a.;nl)litudo is -I).25 t_ 0.25.
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the growth rate is low. For destabilized conditions, increasing tile maxinmnl temi)erature

in the melt improves radial homogeneity in the cryslal.



7

Bi

C

Co

cp

D

g

9c

Gr

h

keq

Pe

Pr

R

Ras

RaT,

Sc

7'

Tc

AT

AT

TE

V

x

Z

Nomenclature

Biot number, hR--U

l 0 "(,one ntratmn in the melt

Initial concentration in the melt

IIeat capacity, J/kg.K

Diffusion coetticient, m2/s

Axial position in a crystal in terms of crystal mass fraction

Gravitational acceleration, m/s 2

Grashof number, _

Iteat transfer coetIicient, J/m2.K.s

Equilibrium segregation coefficient

Peclet number, n__._g_v
D

1/

Prandtl number, 7

Radial position, m

Inner radius of ampoule, m

Solutal Rayleigh number, GrSc

Thermal I{ayleigh number, (:rib"

11

Schmidt number, F

Tempera,ture, l(

Cooler temperature, K

Ileater temperature, K

7'm_,: - 7)opol ,_tt, destabilzed conditions, I{

'I'l_=l -- 7'/_=0, stabilzed conditions, K

Truncation error

Solidification rate, m/s

Mole fraction

Axial position, m

Thermal diffusivity, m2/s

Coefficient of thermal expansion, K -1
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_S

_T

_v

#

v

Solutal boundary layer thickness, m

Thermal boundary layer thickness, m

Momentum boundary layer thickness, m

Dyna.mic viscosity, kg/m.s

Kinematic viscosity, m2/s

l)ensity, kg/m 3
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